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Abstract:
It is demonstrated that the most widely used sets of the Dubinin-Polanyi (DP) isotherm
equations may be derived from an isotherm equation that has its basis in simple
quantum mechanical (QM) assumptions.  These derivable isotherms include the
Dubinin-Radushkevich (DR), the Dubinin-Astakhov (DA) and the Dubinin-
Radushkevich-Kaganer (DRK) equations.  The initial derivation in part A assumes no
energy distributions other than that obtained in the QM treatment.  Using this
homogeneous assumption the DR, DA and DRK equations were found to be valid
within 2% over a pressure range that covered at least a factor of 100 for typical
ceramic adsorbents.  In the course of the derivation, the philosophical problem of dual
use of the DR equation for both porosity and open surfaces (DRK equation) is
resolved. The methodology for heterogeneous surfaces and comparisons to DP and
other isotherms using the heterogeneous assumption are described in part B.
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1. Introduction:
The purpose of this and the following article is to demonstrate that the Dubinin-
Polanyi (DP) isotherm equations and a quantum mechanically derived adsorption
isotherm are mathematically the same over the pressure ranges normally used
experimentally.  By doing this, two objectives are accomplished:

1) the validation of the DP description by placing on more firm theorical
foundations and 

2) the demonstration of the usefulness of the QM/statistical mechanical derivation,
and the P description, in that it is now strongly supported by extensive
experimental data which has been analyzed using the DP equations.

In this part (part A) a homogeneous surface is assumed in the derivation.  This yields a
mathematical proof of the equivalencies.  In part B, the heterogeneous assumption is
examined. The heterogeneous assumption  requires some assumptions about surface
energy distributions.  Numerical calculations along with some reasonable distribution
assumptions demonstrate a much broader range of validity between the two
representations.

The DP isotherm equations (as described by Dubinin[1],[2], Dubinin and Stoekli[3],
Huber and Stoekli[4] and Stoekli[5] plus many more references) in the various forms
are used extensively to analyze porosity of materials.  These equations are no doubt the
most widely used of the analytical forms for adsorption isotherms for porous materials. 
There are several modifications, but the isotherms used most often are the Dubinin-
Radushkevich[6],[7] (DR) and the Dubinin-Astakhov[8],[9],[10] (DA) equations. 
Another isotherm, the DRK equation, originally proposed by Kaganer[11],[12] to
overcome the break-down of "Henry's law," is identical to the DR equation in form but
is applied to surface area measurements other than porosity.  The use for this
application seems to some investigators as a curious phenomenon; i.e., an isotherm that
is derived for porosity is used in an unrelated area.
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The DR and DA equations, originally found by Dubinin and Radushkevich[13] to be
very good empirical fits to adsorption data in porous carbon and zeolites, were later
derived by Dubinin based upon two assumptions.  The first assumption made by
Dubinin[14] is the "thermodynamic criterion" which is supported by many
experimental observations.  This criterion utilizes the concept of adsorption potential,
A, and is given as

(1)

where

(2)

Here Ps is the vapor pressure of the adsorbtive that would be observed over the liquid
phase that has a flat interface with the gas and P is the actual adsorbtive pressure. 
(Due to the large number of symbols used in this article, a list of all symbols, SI and
otherwise is given in Appendix A.)  The second assumption presented by Dubinin[14]
is that the energy of adsorption between the adsorbate and the surface follows a
Weibull distribution curve.  From this the generalized DA equation is derived, of
which the DR equation is a special case.  One form of the  DA equation is:

(3)

In this equation k is a constant whose value can vary somewhat, usually from 1.5 to
about 4.  (The symbolism has been changed here somewhat to conform with the 1989
SI/IUPAC conventions.)  The special case with k equal to 2 is the DR equation.  The
parameter $ is dependent upon the adsorbate; whereas, the energy term B is dependent
upon the adsorbent.  The subscribe A indicates the adsorbate.  The nAo is the number of
moles to completely fill the pores of the adsorbent.  For this purpose, a corrected
density of the liquid is used.  This correction is dependent upon where in the isotherm
the pore filling begins.  Dubinin, Zhukovskaya and Murdmaa[15] (DZM) presented a
tabulation of the corrected densities.  It is also possible to calculate density from the
QM based equations.  The external, non-porous area is assumed to be very small
relative to the pore volume and may therefore be ignored.  The DRK equation is
identical in form to the DR equation, i.e. k = 2, with nAo becoming nm, the monolayer
equivalent moles adsorbed.

The quantum mechanical (QM) based isotherm derived by Fuller and Condon[16]
from which the DP equations may be derived is based on the following assumptions.

(1) The surface may be treated as a quasi-two dimensional (2D) potential box (i.e.
the potential difference is only normal to the surface, the 2D of the surface is
the box dimensions) of a size considerably larger than an individual adsorbate
molecule.  The surface may consist of patches of individual planes as assumed
by Sanford and Ross[17].

(2) The first particle adsorbs and takes the QM form of a 2D ideal gas, i.e. a simple
particle in the box.
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(3) The second particle adsorbs as another QM particle in the box.  This box,
however, has been modified by the first particle.  The potential well now looks
like the original with a "tooth" present where the first particle is located.  It is
therefore assumed that the energy of attraction of the bare surface is greater
than with the "tooth".  This "tooth" then is a classical approximation for the
location of the first particle.  

(4) The third adsorbate molecule adsorbs as the second except there are now two
"teeth".  Classically, these "teeth" are normally, just by statistical
considerations, not in the same location.  However, occasional they will
coincide and become effectively one "tooth."  In the case of only two adsorbate
molecules this will be extremely rare, but it becomes more common as the
surface coverage increases.  This effect is taken into account naturally by the
QM treatment.  Subsequent adsorbate molecules follow the same pattern.

A bit of explanation is in order about the energies involved in this system.  The energy
difference between the top of the potential box and the bottom without any particles
present would normally be referred to as the adsorption energy.  Once the first two
particles are present, in addition to the attraction to the surface, there exists an energy
of interaction between the first and second molecules.  This energy of interaction is the
same as that between two molecules in the liquid state.  Thus, this difference between
the energy at the outside of the box (i.e. gas phase) and the top of a tooth is the same as
the energy of attraction between two liquid molecules.

(5) The translational energy of the particles adsorbing are considerably above the
ground state level and the formation of the solid phase is not possible.

This condition leads to the sixth condition by the following reasoning.  The location of
the tooth within the adsorbent patch would be important if the quantum number of the
second adsorbate molecule were low, that is if the wavelength of the particle were not
much smaller than the tooth.  If it is not much smaller than the tooth, it however
implies that the translational energy is close to the ground state in violation of
assumption (5).  A rough calculation of a typical adsorption system is enough to
demonstrate this.  The average particle has a very high quantum number since
kT >> h2/8mx2 = ,t.  For example, even for very small adsorbent patches, say 10 nm,
and liquid N2 adsorbate,  kT . 1 x 10-21J and ,t . 2 x 10-26 which gives an <nx> . 400. 
For N2 an average nx of 20 represents a sufficiently small wavelength, i.e. 0.5 nm
compared to the nitrogen molecule of ~4 nm, to assume that the tooth position is not
very critical.  The perturbed potential well energy under these assumptions becomes an
average over the entire area, which includes the tooth/teeth.

(6) Since the average wave length of the adsorbate particles is very short compared
to the molecular size, the entire treatment may be done classically provided the
conclusion about the energies obtained in the QM treatment is used.

From the above considerations, it would appear that the number of states available for
a typical adsorption temperature are considerably greater than the number of particles. 
Therefore:

(7) The system is then assumed to be a dilute system (of filled states not particle
concentration) for which Maxwell-Boltzmann statistics applies.  However,
there is only one "box" in which to put all the adsorbate particles.  From this
then. the grand canonical partition function is derived to arrive at the QM based
isotherm equations.
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1 Note that Ea is defined with as a positive value which is the negative of the energy for the
adsorption process.  This is the convention adopted by Fuller; whereas, the adsorption
energy defined by Dubinin is a negative value.

The results for the energies appear classically as if the first adsorbate molecule
"shields" an area of the surface from the second adsorbate molecule, and so forth for
subsequent adsorbates.  (For this reason, Fuller refers to this as autoshielded
physisorption or ASP.)  Added to this are the interparticle interactions.  The use of a
uniform potential box is the recognition of the fluid-like nature of the adsorption. 
Fluid-like implies that there are no adsorption sites and no localized bonds of localized
intermolecular forces.  This condition might be too extreme as it appears that
adsorbates for which directional forces are expected, such as water, appear to fall
within the model.

The shielding obtained by the classical derivation in terms of energy can be derived
using the WKB approximation as given in Appendix B.  The resultant equation as
derived in Ref. [16] for only one energy patch (one "box") is:

(4)

where and U is the unit step function and P and Pc are defined by:

(5)

and

(6)

where Ea is the energy released for the first molecule adsorbed compared to the liquid
state1.  Eq. (4) will be referred to here as the chi (P) form of the QM isotherm equation,
or the (simple) P equation.  It will be convenient to define the quantity )P / P ! Pc to
simplify the equations.  Using the symbol 2 for n/nm this yields the very simple looking
equation:

(7)

The left side of this equation is related to the amount adsorbed, whereas the right side
relates to the energy considerations.  This equation will be used to link the functions
which follow in order to derive the DP equations.  

Given the isotherm relationship of adsorption pressure versus amount adsorbed, Eq.
(7) can be used to analyze for both the surface energy and surface area for nonporous
materials.  Fuller, et. al., have done precisely this for a variety of materials.  These
materials included, for example, lunar soils[18],[19], thoria[20], diamond and
alumina[21] and other ceramics[22],[23],[24],[25].  Fuller also demonstrated that this
curve could be used as a convenient substitute for the comparison plots[26],[27],
circumventing the errors associated with the standard curves.   

This author's experience in the analysis of zeolite data indicates that the data fits to the
DP equations with the P isotherms modified for porosity are seldom distinguishable by
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2 I.E. if one has two linear equations with a common independent variable, a third linear equation
between the dependent variables may be determined.

statistical methods.  Tests such as the F-test have usually failed to yield a distinction. 
Occasionally the P fit was better but this was often due to slight amounts of external
surface area which the DR and DA equations do not address.  The reason for this
indistinguishability is now quite obvious, since the DA, DR and DRK equations can be
derived from P theory.  The derivation presented here will not seem straight-forward to
some who are unfamiliar with modern mathematical proofs.  It is, however, much
simpler to understand, and present, than a more linear-thinking derivation.  It is not
uncommon today in mathematics to approach a proof from two results to arrive at the
equivalence at some middle point, which is done here.

In the following derivations the methodology is to:

Step 1 - show the equivalency between the chi formulation and the DP formulation
for surfaces which have no curvature,

Step 2 - correct the energy term for surface curvature.

Step 3 -  correct for geometrical restrictions.

Step 4 - combine the two corrections into the method described in step 1.

In this paper,  the corrections for step 2 and 3 are both performed for cylindrical
geometries.  The geometry which assumes slit shapes is much simpler since it requres
step 3 but not step 2.

Step 1 - derivation using P equation without surface curvature corrections:  Some
preliminary mathematics is needed before the derivation of the DR and DA equations
can be demonstrated.  Two functions are used in this derivation which are related to
each other over a particular range.  These two functions are defined here as:

(8)

and

(9)

In relation to P theory, the Q portion of Eq. (8) will be given as:

(10)

Both functions, f1 in Eq. (8) and f2 in Eq. (9), can be approximated by a series
expansion, but the point about which they can be expanded must be carefully selected. 
If one sets up a parametric relationship2 for these equations of the form:

(11)

Then an inflection point is centered on x = 1/k.  Using the series expansion about 1/k,
one obtains the following for s (slope) and b (intercept) (also: e = 2.718...) :
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(12)

Notice that b is a function of k.  It is also useful to know over what range of values one
can use this relationship without a significant error.  Expanding the series does not do a
proper job of yielding this answer since the two series do not converge at the same
rate.  However, one can compare the Taylor series  expansion from Eq. (8) and that
from Eq. (9) directly to Eq. (11) to determine this.  (Alternatively a few sample
calculations yield the answer.)  For a 2 % error in the value of x compared to the range
considered, the range is from x = 0.5/k to 1.5/k.  (This range can be expanded
considerably if one recalculates s and b for the entire range considered.  This will be
more important for the equations related to porosity below.  For the moment, the
estimates from Eq. (12) will be used.)  

The above relationship, Eq. (11), may be used to relate P theory for a flat surface to the
DP isotherm.  Eq. (8) may be associated with the pressure.  Thus, using the definition
of )P:

(13)

Substituting in the x range given above into this equation yields the ratios of the upper
and lower limits of pressure for which the 2 % error criterion applies.  For a typical
ceramic material with a Pc of -2.5, this corresponds to a factor of 100 in the pressure
range.  Since for a flat surface Eq. (7) states that )P = 2 when )P > 0, then equation
substitution into Eq. (9) may be used to yield:

(14)

These substitutions yield:

(15)

or with log10 as normally seen in the literature:

(16)

Q is the energy term given in Eq. (10).  This is exactly the form of the DP as would be
applied to a flat surface.  With k = 2, this is referred to as DRK equation proposed by
Kaganer[10]:

(17)

Where the intercept yields, nb, assumed to be the value for monolayer equivalent.  This
in turn yields a value for the surface area.  From the above equation, however, one can
determine that the relationship between the monolayer coverage, nm, and the intercept
value, nb, is:

(18)
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or for the DRK equation, k = 2:

(19)

The isotherms associated with the porosity may be derived in a fashion similar to that
used in this section.  To do this, Eq.(8) and Eq. (9) need to be modified.  Eq. (8), which
has been associated with the fugacity, will incorporate the surface tension correction. 
Eq. (9) which relates the adsorbate activity with the amount adsorbed, is modified to
account for the limitations of geometry.  These modifications depend upon the
specifics of geometry selected.  For this purpose, a geometry of long cylindrical pores
is used since this is probably the most common application.

Step 2 - modification of the energetics due to surface curvature:  The energetics due to
surface curvature is derived using classical thermodynamics combined with the
equations of state given by the chi equations.  The caveat to this approach is that most
pores considered are very small and there is always a question of the applicability of
macroscopic equations being applied to a microscopic phenomenon.  This problem is
common when addressing surface problems.  Compared to the gas-adsorbate surface,
the surface considered here, the solid - adsorbate surface, statistically involves more
particles, counting the solid surface atoms.  This question could be a good area of
future theoretical research, but for the moment the classical approach to this problem
will be utilized.

One of the equations utilized in the derivation of the energetics is the expression for
the spreading pressure.  This is obtained using the Gibbs-Duhem equation with the
results the isotherm obtained in chi theory (see Appendix C for details.)  The relevant
equation is:

(20)

The energy correction for the curved solid surface is based on the Kelvin equation and
the surface tension (Eq. (20)) of this interface.  For the adsorbate-solid cylindrical
interface the Kelvin equation would be: 

(21)

where r is the radius of curvature of the adsorbate-adsorbent surface and the plus sign
emphasizes that this is for a concave surface.  (Note that in this macroscopic
approximation, the location of the adsorbate-adsorbent surface is the same as the solid
surface.  Thus r will be used for the pore radius as well.)  In most presentations of the
Kelvin equation, the vapor pressure over the curved surface is given the symbol Po and
Ps is the vapor pressure over the flat surface, i.e. the experimentally observed, normal
vapor pressure.  This convention is continued in this article.  The surface being
considered here is the adsorbate-solid interface, and this surface has only one radius of
curvature.  This is the radius of the cylinder.  (For enhanced pore filling due to the
surface tension of the liquid-gas interface, there are two.)  Also notice that the tension
used is (a - (4.  If the surface is totally covered with the dense bulk liquid, there should
be no net tension difference as this term correctly yields.  One can substitute Eq. (20)
into Eq. (21) to obtain the following equation:
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(22)

P and Pc are referenced to Po, the diminished vapor pressure due to the surface
curvature, and not to Ps.  In other words, )P is the value that would be obtained for the
flat surface.  This equation indicates the interesting result that Po is a function of P. 
There is no contradiction here: it is perfectly permissible for Po to be a function of P,
but Ps may not be.  Two extremes for this equation are instructive.  As the pressure, P,
approaches Po, the Po approaches Ps thus:

(23)

Classically, this is what would be expected, as this approaches a fully covered first
layer (plus other layers), and thus, there would be no extra energy due the interaction
with the solid surface.  The other extreme is as the )P approaches zero:

(24)

For a cylindrical pore, the smallest radius would be Vm/Am, or twice the molecular
radius.  Thus the lower limit as r approaches Vm/Am is:

(25)

This is precisely the relationship that Fuller, et. al.[28], determined experimentally for
several microporous adsorbents.  Referencing P to Ps, i.e., the experimental saturation
pressure, yields the dependence of the P equation on the surface curvature above the
unit step function criterion:

(26)

It will be convenient to group the energy term with the pressure in order to utilize
Dubinin's adsorption potential and rearrange Eq. (26):

(27)

Where A is still referenced to Ps as applied in the DP formulations.  The experimentally
observed pressure relationship is no longer P/Po, but rather P/Ps.  This could be a
source of confusion.  A clear distinction must be made between the P plot based upon
Po and the observed P plot which is referenced to Ps.  For the observed P plot the
notation Pobs will be used and is defined as:

(28)

The definition for P (without subscripts) remains unchanged.  The definition for Pc
likewise remains unchanged and a similar definition of Pc,obs to Eq. (28) is used.  For
porous materials the "P plot" obtained experimentally, actually Pobs, will likely differ
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from the plot based upon P value.  To convert )Pobs to )P for a concave surface one
could first determine Pc by:

(29)

and then determine P using multiple approximations of the equation:

(30)

A useful approximation at low pressure, and thus low )P, is to combine Eqs. (29) and
(30) and expand the ln term to yield:

(31)

Notice that if there are two or more different pore sizes, the P plots no longer add. 
Under these conditions, it is the Pobs plots which add.  Unfortunately, this complicates
the calculations.

The question: "At what pore size may one confidently ignore the curvature effect?" can
be answered by inspection of Eq. (27).  If the data are good to within 1%, then a
rAm # 0.01Vm is required, well into what is normally considered the macropore range. 
By 
inspecting the implications for the concave surface it will be convenient to define f1,
the function associated with energy terms, by the following equation:

(32)

The function f2, the function associated with the physical coverage, is also modified
but by the geometrical restrictions associated with the pores.

Step 3 - geometrical restriction:  The general approach to the restrictive geometry
problem is similar to that presented by several other investigators.  Apparently, the first
to point out the restriction and use it to calculate the porosity were Barrett, Joyner and
Halenda (BJH) [29].  There is one additional feature to this treatment that is required
and that feature is the variation of the density of the adsorbed phase, as pointed out by
DZM [15].  For illustration, their data is presented in Table 1.  From these density
measurements alone, an estimate of pore size may be made from the P density
calculation.  This is done by assuming that the pore filling as reported was a sharp cut-
off in the uptake of the adsorbent.  This is only a crude estimate partly due to the pores
continuing to fill somewhat after the geometrical constraint is reached due to
densification of the adsorbate.  Furthermore, the estimate assumes no geometrical
shape, i.e., the geometry would be equivalent to slits.  This should become clearer with
the derivation below.  This density variation effect may be calculated from the P
equations in the following fashion.  (It's better to start from the P equation point of
view than from Dubinin's revelation in order to be consistent here in the derivation. 
Dubinin's revelation, of course, predates the P derivation.)

The P theory assumes, for a first approximation, that the interaction between adsorbing
molecules are all of the same energy.  That is, the intermolecular force between a
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molecule in the second layer and the first layer is the same as between a molecule in
the third and second layer.  This may be an oversimplification, but this assumption is
used by most numerical and other modeling techniques including the BET [30] and the 
BDDT [31] isotherms.  With this assumption, there is no particular reason that the
areal density, defined as mass or moles per unit area, of molecules in the second, third,
etc. layers should differ.  However, the P theory makes no assumption about layers,
indeed it treats all adsorbed molecules equally.  The areal density that can be derived
from the P theory is that of the adsorbed molecules which at any one time are
immediately in contact with the surface, i.e. the shielding molecules or in the QM
description the "teeth".  The density of this layer (on a flat surface) compared to liquid
density, 21, is given by the equation [16]:

(33)

Thus, if an equivalent monolayer of gas is adsorbed, the areal density is only 0.632 of
that expected from the liquid density.  How the difference in density is accomplished is
not specified in the P theory.  This could be patch-wise adsorption or merely that the
adsorbate is less dense than the bulk liquid.  It is known that if the adsorption energy is
high enough, a regular pattern of adsorption patches may form.  (e.g. see Ref [32]). 
With low adsorption energy, a more random adsorption takes place.

A common way of viewing pore filling is to utilize the "thickness" (as defined by
deBoer, et. al. [33]) of a layer, t.  This thickness is known to be an average thickness,
as the multilayers do not stack perfectly.  This average thickness, however, is
dependent upon the adsorbate density, which is known from DZM to deviate from the
liquid density.  The only difference in density as noted above is in the plane of the
surface and not normal to the surface.  Thus, the areal density correction for the first
layer is also the adsorbate density correction.  Using this correction t is related to 2 (on
a geometrically unrestricted surface) by:

(34)

or an average volume of the adsorbed layer by:

(35)

The equations derived which express the geometrical restriction are straight-forward
geometry [29].  The volume adsorbed in a cylindrical pore of length l and radius r is
given in terms of adsorbate thickness by:

(36)

This is to be compared to an equivalent flat surface of dimensions l by 2Br.

(37)

Since this is not a flat surface, a more general approach is to use )P in place of 2 in
Eq. (34) and Eq. (35).  According to the BJH formulation, the actual value of 2 must
take into account the fact that some of the material that would normally be adsorbed on
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a flat surface with volume given by Eq. (37) is not present according to Eq. (36).  Thus
the experimental 2 will be related to )P by:

(38)

The thickness is then related to )P through the areal density function by the
relationship derived from Eqs. (34) and (7) above the unit function criterion:

(39)

Using Eqs. (36), (37), (38) and (39) yields:

(40)

or:

(41)

Making substitutions into Eqs. (40) and (41) in Eq. (9) yields a new function, f2.  The
function f2 is now dependant on r:

(42)

or:

(43)

Step 4 - combining energy considerations and geometrical restrictions:  The Taylor series
expansions about )P = 1/k may be carried out as before.  Notice that except for some
additional linear terms, Eq. (32) is similar to Eq. (13) and Eq. (42) is similar to Eq.
(14).  The functions, f1 and f2, may be related as before with new numbers.  Thus:

(44)

Where in addition to b' being a function of k, both s' and b' are functions of r.  It should
be noted that to apply P theory, r should be greater than Vm/Am for cylinders. 
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Physically, the smallest value for r is 0.5Vm/Am; i.e., when the pore radius and the
adsorbate molecule radius are equal.  Chi theory, however, requires that the molecules
are able to pass by each other, thus the lower limit of Vm/Am.  (Another function must be
used in place of e-)P when the molecules cannot pass each other.  This function,
however, can be roughly approximated by e-)P to yield nearly the same answer.)

As the pore sizes get large, the relationship approaches the constants given for the flat
surface.  Following the method outlined previously, the following equation is
determined by substituting into Eq. (44):

(45)

Which is the DR and DA equations.  By comparison of Eq. (42), Eq. (32) and the same
inflection point the values of s' and b' are:

(46)

and

(47)

Although these values are a good guide, again it is more useful to use a error criterion
to make the match.  This is especially true since the combination of Eq. (42) crossing
over to Eq. (43) creates a larger linear range.

2. Results of the comparison for a single adsorption energy - evaluation of s' and b'

One could use two approaches to obtaining s' and b'; the first of these is to determine
the inflection point of Eq. (45) and determine the tangent to this inflection point.  The
slope and intercept then yields these constants.  Table 2 is a listing of some of the
constants as a function of r and k.  Due to the skewness of the second derivative of this
equation, however, the range for a given error is limited.  A second approach is to
select a permissible error and determine an overall range which meets the requirement. 
Such a method yields a much broader valid range.  With a Pc of -2.5 and an allowed
error of 2 %, the range can extend over pressure ranges of a factor of about 105 or
more.  Table 3 contains some examples using this method for the DR isotherm.

In Figs. 1!4 are some of the k = 2 curves, the DR plots, with linear portion predicted
from the values from Table 3.  The curves generated from the P treatment are plotted
in the standard fashion for the DR isotherm.  In order to lend some reality to the
perspective of these figures, a Pc has be selected in order to plot log(P/Po)

2 as the x-axis
rather than f1 of Eq. (32).  This is not relevant to the discussion since changing Pc
merely changes the scale of the axis.  In these figures the value for Pc was selected as -
2.5.  (Note that with the conversions of ln to log on both axes and this value of Pc that
s' needs to be multiplied by 0.0155.)  The value for Pc of -2.5 is typical for SiO2 and
other ceramic adsorbents.  One of the most noticeable features is the extension of the
linearity.  This is quite impressive even for the shortest one presented here with
r = 10Vm/Am, which is probably into the mesopore range with its complications.  This
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mesopore adsorption is complicated by the additional concern of the formation of the
liquid-gas interface and the pre-filling due to the second application of the Kelvin 
relationship.  This would imply that it would be very difficult to determine from
experimental data what the valid range is for this latter case.
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Figure 1 DR plot (solid line) generated
from the QM based treatment for
r = 10Vm/Am for a homogeneous (single
energy) surface.  Dashed line is the linear
approximation from table 3.
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Figure 2 DR plot (solid line) generated
from the QM based treatment for
r = 3.3Vm/Am for a homogeneous surface. 
Dashed line is the linear approximation
from table 3.
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Figure 3 DR plot (solid line) generated
from the QM based treatment for
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Figure 4 DR plot (solid line) generated
from the QM based treatment for
r = 1.1Vm/Am  for a homogeneous surface. 
Dashed line is the linear approximation
from table 3.

3. Discussion of Results
The most important results is the large range of validity of the relationship given in
Eq. (45).  This indicates that the DR and DA equations are indeed justified by the
QM/statistical mechanical treatment of adsorption.  Furthermore, a similar relationship
was found for DRK equation, a point which may be a bit disconcerting to some.  (See,
for example, the book by Sing and Gregg [34].)  One could argue that the valid range
does not extended from 0 to 4 and therefore this does not fully validate the DP
isotherms.  This, however is much too stringent a requirement, since the actual



- 14 -

applications of these equations usually extend over an even shorter range than
demonstrated here.  Furthermore, the requirement of one surface energy is also too
stringent.  In part B, some reasonable distribution of energies is assumed to
demonstrate that the range of validity may be extended to effectively meet the more
stringent requirement.

The DRK equation states that the intercept of Eq. (16) should be 0.  Thus the term
exp(b) is a multiplicative factor which indicates the error in the extrapolations of DRK
isotherm.  From the intercept values, b, in Table 2, the value obtained by extrapolation
to the axis (where log(Po/P) = 0) should then be between ~0 % and ~20 % too small. 
This is off-set by the recommended IUPAC correction factor (1.098) for the BET
which increases the answer by about 10 % from the liquid density value.  It is therefore
not surprising that this spread of ±10 % is typically found when comparisons between
materials is determined. (See, for example Granville, Hall and Hope [35].)  For the
DR/DA equations the intercept of -ln(2Vm/rAm) is only slightly different than the
numbers presented, especially for the large pore sizes.  For smaller pores
(r > 3.3Vm/Am), a difference of about 0.01 to 0.02 exists for the intercept,  which
corresponds to an error of only 2 to 5 %.  

Another point to notice from the tables is as follows.  At the very low values of )P,
lower than a 1 monolayer equivalent, all three equations yield errors greater than 2%. 
These low coverages, however, are rarely of importance in the application of the DP
equations.  On the other end of the isotherm, the values of r for which there is the
shortest range of validity are for very small pores and the range of measurement is
correspondingly short.  These theoretical problems are for r > 2Vm/Am or pores which
have a radius less than 2× the molecular diameter.  The pore filling is therefore
essentially complete before this (then theoretical) problem arises, making the concern
irrelevant.

In application of the equations, obtaining the constants s' and b' for any particular
sample is relatively simple from the P equations.  This is because the P equations
yields the parameters of pore size, internal surface area (and therefore pore volume),
external surface area and surface energy values needed in the calculation.  Thus, all the
constants can be predetermined in order to calculate the DP parameters.  It is, however,
very difficult to reverse the process since the energy and pore sizes are bound together
with the series expansion constants.  Furthermore, the answer is also sensitive to range
over which the DP equation is applied.  This is similar to the problem of attempting to
recover data from the BET parameters without knowing the range of application.  A
more direct route is to simply simulate the data with the DP equations and refit with
the P plot.  This is, unfortunately, still sensitive to the original treatment method, for
example the range of the fit.

The mystery as to why the same isotherm can be used to analyze in one case for the
pore volume (DR) and in another case for the surface area (DRK) has been
mathematically resolved.  A further insight into this can be obtained by an inspection
of the cross-over criterion for Eq. (42) and Eq. (43).  So long as the )P is small
enough to satisfy the criterion for Eq. (42) the 2 is a modified measure of surface
coverage and for r = 4, i.e. a flat surface, it will be the coverage.  This is more obvious
in the approximation the low pressure range given in Eq. (31).  The slope of the P plot
(approximately but not quite Pobs) at very low pressures then yields the surface area for
pores with radii equal to or greater than the adsorbate molecule radius.  The Pobs plot
will then deviate downward with increasing pressure due to the geometrical
constraints.  From the geometrical constraints a value for r can be obtained in order to
calculate )P from Pobs.  For values of )P greater than the criterion of Eq. (43), the
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intercept for ln(2) will yield a 2 value of rAm/2Vm, from which the pore volume may be
calculated.  More simply put in terms of pore volume, this should then be:

(48)

A characteristic of the larger micropores is that the DR and DA plots have a substantial
deviation at high pressures.  This deviation would become even more obvious as one
were to reach the mesopore range except that the capillary filling phenomenon
obscures this.  For such curves, the actual intercept, not the extrapolated one from the
linear portion of the curve, should yield the proper value of the pore volume.  In the
cases of very little external surface area, this extrapolation is better performed on the
untransformed isotherm, that is the plot of amount adsorbed versus pressure.  In the
rare case where the external surface area on a porous material is significant, such an
extrapolation may be impossible and one needs to use the P representation to sort out
the physical quantities.

Notice that the last term of Eq. (45) is fairly small or negative for small pore sizes.  The
actual curve will bend upward to 0 when the value is negative, thus giving the correct
answer for the pore volume in the original data.  This is to be expected since the
intercept at high pressures should be the log10 of the pore volume, in this equation
given in terms of 2.  The scaling of the pressures with the energy term is also exactly
what happens in the DR and DA equations with the energy terms.  Given that Eq. (41)
was used to derive this relationship, it is also not surprising that upon inspection of the
generated DA plots this relationship holds up very well above a pore radius greater
than 1× the value for Vm/Am.  At a value of 0.5×, which is the smallest cylindrical pore
which can be measured, the relationship is off by about 5%.  These points are more
obvious by inspection of Figs. 3 and 4. (Fig. 4 is for r = 1.1Vm/Am in place of r = Vm/Am
to avoid convergence problems.)

A discussion of the advantages and disadvantages of the two different representations
of the isotherms for porous materials is in order.  The primary advantage of the
Dubinin-Polanyi formulation is the ease of analysis.  Adding parameters beyond the
DA representation does not seem to be justified without some prior knowledge about
energy distributions.  The reason for this is that the adsorption data are usually not
obtained over a large enough range to justify adding any additional parameters.  The
primary disadvantage of the DP representation is that it does not always yield an
answer for the pore sizes, especially if the experimental, untransformed, intercept and
the DA-plot extrapolated intercept are not the same.  It definitely has the disadvantage
that the external surface area cannot be accounted for and can therefore yield a large
error if it is present to a significant amount.  This is not usually the case for very
microporous material, such as zeolites, where the external surface area is less that 1%. 
The primary disadvantage of the P representation is the difficulty of the calculation.  A
single pore-sized material is not too difficult to set up in a spread sheet, but accounting
for multiple pore sizes appears to be a very difficult computation task.  The advantage
of such a method is that it will yield the adsorption energy, the pore radius, the pore
volume and the external surface area.  As demonstrated in part B, An adsorption
energy distribution is also not difficult to set up but determining the energy distribution
itself can be problematic.

Both methods have difficulties with mesoporosity.  For the P theory, however, this is a
small addition to the spread sheet which is used.  Unfortunately, the actual forms of the
equations that need to be added onto the P plot is uncertain.  No provisions or claims
have been made for the Dubinin formulations, but it might be possible to use the basic
plot to unscramble the mesoporosity.
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Conclusions
The (DP) isotherms may easily be justified upon the basis of a simple QM description
of adsorption.  Incorporation of the QM effects eliminates the traditional criticism of
the DP isotherms presented by Avgul, et. al. [36].  The ones investigated in this report
are the DR the DA and the DRK isotherms.  It would seem reasonable that other more
complicated forms would also fit within the framework of the derivations.  The range
of validity vis-a-vis the QM based isotherm derivation, given the designation as the P
description, is very large.  With only a single energy of adsorption, i.e. a perfectly
homogeneous surface, the QM derived energy spread in the P equation is enough using
the inflection point technique to validate the DP isotherm within 2 % over a range in
pressure of at least a factor of 100 depending upon pore size.  Furthermore, the valid
range is precisely that for which these equations are used the most.  (The match
between the two formulations should be much better than derived by this technique, as
illustrated for the matches made with the DR equation using only the 2 % range
criterion.  In that case the range of validity in pressure was at least a factor of 400.) 
Such a match would seem to validate both the DP description, in that it is also based in
a QM/statistical mechanical derivation, and the P description, in that it is now strongly
supported by extensive experimental data.
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Appendix A.  Nomenclature

$ = Adsorbate dependent parameter in the Dubinin-Polanyi equations
( = surface tension, J/m2

(a = surface tension of adsorbent, J/m2

(4 = surface tension as pressure goes to Po, J/m2

* = Kronecker delta function
)P / P ! Pc 
, = energy of interaction between adsorbed molecules, J/mol
,t = translation energy, J/mol
2 = equivalent monolayer coverage = moles of adsorbate divided by the number of

moles that calculate to cover the surface by exactly a single layer, mol/m2

21 = coverage of the surface by the 1st adsorbed layer
F = 1 standard deviation
P = the chi function defined in Eq. (4)
Pc = the critical chi value defined by Eq. (5)
Q = wave function
a = area of an adsorbed molecule, m2

A = Dubinin's adsorption potential, J/mol
Am = molar area of adsorbate = NA × a, m2/mol
As = surface area or, in the QM derivation, the area of an adsorbent patch, m2

b = intercept of a line
B = the energy term in the Dubinin-Polanyi equations
b' = another defined intercept of a line
c = starting position of the adsorbate "tooth", m
d = ending position of the adsorbate "tooth", m
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E = total energy in WKB approximation, J
Ea = energy of adsorption as define by Fuller which = Vad - ,, J/mol
Ef = energy after perturbation (finish), J
Ei = energy of adsorption for the nth molecule (i is an index), J/mol
Es = non-perturbed energy (start), J
f1 = function defined by Eq.(9)
f'1 = function defined by Eq.(32)
f2 = function defined by Eq.(9)
f'2 = function defined by Eq.(42)
g(x) = g function in WKB approximation
h = Plank's constant
h(x) = h function in WKB approximation
i = index for the ith molecule
j = index for the jth molecule
k = the exponential constant in the Dubinin-Polanyi equations.  For DR k = 2.
k = Boltzmann constant
l = box length for the particle in the box 
m = mass of a particle
nA = the number of moles of adsorbate
NA = Avogadro's number
nAo = the number of moles to completely fill the pores of the adsorbent, mol
nb = number of moles at the intercept of the DRK equation, mol
nm = the monolayer equivalent moles adsorbed, mol
nx = quantum number (translational)
P = pressure, Pa
Po = vapor pressure of an adsorbative over a curved surface = the modified vapor

pressure in the Kelvin equation, Pa
Ps = vapor pressure over a liquid with a flat surface, Pa
Q = constant defined by Eq. (10)
R = the gas constant
r = adsorbate-adsorbent radius of curvature . pore radius (cylindrical), m
rF = the Freundlich isotherm constant
s = (not a subscript) slope of a line
s' = another defined slope of a line
S(x) = S function in WKB approximation
t = average thickness of the adsorbed layer, m
T = temperature /K
U()P) 

= the unit step function at P = Pc
V = volume of the adsorbate, m3

V(x) = potential energy function in WKB approximation, J
Vad = energy of adsorption not including ,, J/mol
Vm = molar volume of adsorbate, m3/mol
W = W values in WKB approximation
x = in the WKB approximation - distance, m, otherwise a dummy argument.
z = the ratio a/As (in QM derivation)

Appendix B.  Use of the WKB approximation to derive the PP equation.
The WKB (Wentzel-Brillounin-Kramers, see for example Jeffreys[37] or Smith's book
on Wave Mechanics of Crystalline Solids[38]) approximation is used to derive the P
isotherm by the following.  For a particle in a (1D, 2D is obviously similar) potential
box, for a particular quantum number, nx, the wave function, Q, is of the form:



- 18 -

3 The assumption V << Ef is not totally necessary.  If this were not the case then the expansion would need to be
carried out further, in which case a new value of V would be obtained in the subsequent derivation differing from
the V given at the beginning.  The final form of ?, however, would remain unchanged.

(49)

where:

(50)

The solution for R is then:

(51)

where

(52)

and

(53)

A comparison is then made between a particle in the empty box and a particle in a box
with a single "tooth" as a slight perturbation.  In order to have R fulfill the boundary
conditions at the edge of the box (regardless of what those are) the function V(x) - E for
the perturbed system needs to be adjusted so that S(x) at both ends will match the
original function for the empty box.  Assuming a non-perturbed E of Es (for starting,)
this E must be adjusted to another value, Ef (for finishing.)  Using a box size of l and a
tooth located between x = c and d, where d - c << l then Eqs. (50), (51) and (53) require:

(54)

Factoring out Ef:

(55)

Expanding the last square root and, since V << Ef
3, cutting off the higher term and

regrouping:

(56)

Defining a quantity, z: (In the two dimensional box, this corresponds to the ratio of a/As,
where a is the area of an adsorbate molecule and As is the area of the adsorbent patch or
the surface area.)

(57)
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dividing through by l and then squaring both sides:

(58)

The last term is very small since it contains z2, and one gets:

(59)

Notice that the depth of the box potential well does not affect the results, since the
original condition was that the final wave function matches the original wave function
both in slope and magnitude at the boundaries x = 0 and x = l.  Therefore, the original
potential box could be a box of potential depth Vad and the tooth would have a depth
(from the top of the well) of ,.  Thus Eq. (59) becomes:

(60)

The same answer would be obtained for Ef if the particle were in an unperturbed box of
potential Vf of:

(61)

or rearranging:

(62)

This can be extended to subsequently added "teeth," with the general results for the ith
tooth, the energy, Ei, is related to the previous E, Ei-1, by Eq. (59).  Repetition of the
above steps leads to the answer that for the jth molecule the Vf is related to the Vad (see
the next section for proof) by:

(63)

where the subscribe j indicates this is for the jth molecule.  The expansion is only for
the interaction to the surface and does not take into account the interaction of the jth
molecule with the previous (j - 1) molecules.  Thus, (j - 1), must be added to obtain the
total interaction for the adsorption of the jth molecule.  Assuming a reasonably large
number of adsorbed molecules, i, and using the definition that 2 = ia/As:

(64)

Eq. (64) is the starting point for deriving the grand canonical partition function in the
usual fashion.

B.1.  proof of Eq. (63)

Eq. (62) is the starting point for proving Eq. (63) by the usual recursion technique. 
Designate Vi as the Vf for the ith molecule.  Then Eq. (62) is

(65)

then:

(66)



- 20 -

thus:

(67)

or:

(68)

But if:

(69)

and since:

(70)

then:

(71)

or:

(72)

substituting j = i + 1 yields Eq. (63).  QED.

Appendix C - Derivation of spreading pressure from PP

The energy of adsorption for a curved surface will differ from that of a flat surface. 
One way of explaining from a macroscopic, i.e. thermodynamic, point of view is to
assume that the Kelvin equation applies to the curved surface, changing the activity of
the adsorbate in relation to the adsorbative.  From this point of view, in order to
calculate this effect one needs the spreading pressure relationship which is derived from
the isotherm equation.  One can arrive at two different expressions for spreading
potential from the P theory depending upon the reference (.  Starting with the
appropriate Gibbs-Duhem equation for adsorption on the solid surface:

(73)

Here As is the surface area.  Po is the saturation vapor pressure over a surface of the
same curvature.  From Eq. (7) for )P > 0:

(74)

where Am is the molar area.  In P theory this molar area is derived from the liquid
density without any correction factor or:

(75)

Where Vm is the molar volume and NA is Avogadro's number.  Eqs. (73) and (74) yield:
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An alternative and more useful expression for (a may be obtained by reference to (4,
the value for this in the bulk liquid.  One can integrate from P to Po instead, with (
going from (a to (4, to obtain:

(78)

This equation looks simpler when rewritten as:

(79)

It is better at this point to express this relationship in terms of )P and not in terms of 2. 
The reason for the caveat is that 2 can be modified by geometrical considerations
exclusive of surface tension effects.   On the other hand, )P is not altered merely by
geometrical constraints.
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Molar volumes, Vm, of Ar adsorbed in confined pores compared to the bulk liquid
density (according to Dubinin, Zhukovskaya and Murdmaa[15]) and the calculated pore
size from P theory density.

Adsorbent Vm Dad/Dliq coverage at pore
pore filling size

/mL mol-1 /monlayers /nm

CaA zeolite 32.4 0.841 1.84 0.80

NaX zeolite 31.4 0.869 2.03 0.85

AU-1 carbon 33.9 0.805 1.63 0.74

AU-2 carbon 31.2 0.875 2.09 0.87

bulk liquid 27.3

Table 1
Adsorbate density variations and analysis of radius from the density relationship in the P
equations.
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 k=2 k=3 k=4 k=2 k=3 k=4

r = 4 r = 5.0Vm/Am
)Pi = 0.5000 0.3333 0.2500 )Pi = 0.632 0.411 0.306
s' = !2.718 -2.718 -2.718 s' = -1.792 -1.523 -1.280
b' = 0.307 0.099 -0.386 b' = 0.287 0.084 -0.355

r = 100.Vm/Am r = 3.3Vm/Am
)Pi = 0.509 0.337 0.253 )Pi = 0.718 0.459 0.337
s' = -2.660 -2.636 -2.610 s' = -1.455 -1.164 -0.911
b' = 0.309 0.096 -0.383 b' = 0.228 0.113 -0.370

r = 20.Vm/Am r = 2.5Vm/Am
)Pi = 0.530 0.352 0.263 )Pi = 0.849 0.510 0.371
s' = -2.444 -2.335 -2.227 s' = -1.168 -0.896 -0.659
b' = 0.312 0.079 -0.360 b' = 0.131 0.167 -0.406

r = 10.0Vm/Am r = 2.0Vm/Am
)Pi = 0.562 0.371 0.278 )Pi = 1.594 0.580 0.410
s' = -2.201 -2.017 -1.840 s' = -0.748 -0.690 -0.482
b' = 0.312 0.079 -0.360 b' = -0.064 -0.250 -0.465

Table 2
Calculations of the constants s' and b' as a function of k and r.
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r = 100Vm/Am r = 5.0Vm/Am r = 2.0Vm/Am
)P range 0.20 6 1.12 0.25 6 1.42 0.51 6 6.5
s' -2.880 -1.934 -0.915
b' 0.389 0.359 -0.020
Pmax/Pmin 4.2 x 102 1.8 x 103 3.5 x 105

r = 20.0Vm/Am r = 3.3Vm/Am r = 1.7Vm/Am
)P range 0.21 6 1.15 0.29 6 1.66 0.63 6 3.6
s' -2.632 -1.569 -0.653
b' 0.390 0.290 -0.226
Pmax/Pmin 5.0 x 102 4.8 x 103 1.1 x 105

r = 10.0Vm/Am r = 2.5Vm/Am r = 1.1Vm/Am
)P range 0.22 6 1.25 0.30 6 100+ 0.67 6 3.5
s' -2.378 -1.306 -0.407
b' 0.390 0.214 -0.622
Pmax/Pmin 8.1 x 102 9.1 x 105 9.3 x 105

Table 3
Some values for s' and b' for the DR isotherm and the range of application for an allowed
2 % error


