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SUMMARY

An equation 1is derived from statistical mechanics to describe the

entire physical adsorption isotherm. This equation is derived from a
few simple assumptions, which include the indistinguishability, the
following of the adsorbed molecules, and a statistical mechanical "big
box" to model the surface. The equation has been demonstrated to fit
the adsorption isotherms for the materials studied. The derived
equation has the quality that allows the direct calculation of surface
area without any arbitrary proportionality constant. The only other
equation of physical adsorption that has this feature is the Brunaur,
Emmett, Teller (BET) equation. However, the presently derived equation
also applies over the entire range of physical adsorption, in contrast
to the BET equation. Also, for the materials studied, the statistical
fit over the BET range was significantly better. Furthermore, the
treatment can account for first-layer adsorption on specific sites
(such as chemisorption and microporosity) and still yield the surface-
area measurement. In this latter case, it will separate out the first-
layer isotherm from the contribution of subsequent layers. The
equation without the first-layer specific site adsorption is most
easily used in the form similar to that discovered by deBoer and
Zwikker as

In[-In(P/Py)] = -6 + In{-1n[P(§=0)/P,]} ,
where
P = the adsorbing gas pressure,
P, = the liquid vapor pressure of the adsorbing gas, and
§ = the equivalent of one monolayer of adsorbed gas.

With very-high-energy localized sites, the isotherm approaches the
Langmuir isotherm at low surface coverages.



THE DERIVATION OF A SIMPLE PRACTICAL
EQUATION FOR THE ANALYSIS OF THE
ENTIRE SURFACE PHYSICAL ADSORPTION ISOTHERM

J. B. Condon

ABSTRACT

An equation 1s derived from statistical mechanics to
describe the entire physical adsorption isotherm. This
equation is derived from the following assumptions.

1. The surface may be described as a large potential box,
either with or without localized areas of high bonding
energy.

2. The molecules adsorbed on the surface are completely
mobile and may either skate around, over, or under each
other.

3. The bonding energy between a molecule in a high-energy
localized site and a molecule in the next layer is equal
to the energy of liquefaction.

4. The bonding energy of molecules whenever they are in the
first layer is greater than the energy of liquefaction.

5. All other bond energies between adsorbed molecules is
equivalent to the energy of liquefaction (including
lateral bonding).

6. The adsorbed molecules are indistinguishable from each
other.

The equation has been demonstrated to fit the
adsorption isotherms for the materials studied. The
derived equation has the quality that allows the direct
calculation of surface area without any arbitrary

proportionality constant. The only other equation of
physical adsorption that has this feature is the Brunaur,
Emmett, Teller (BET) equation. However, the presently

derived equation also applies over the entire range of
physical adsorption, in contrast to the BET equation.
Also, for the materials studied, the statistical fit over
the BET range was significantly better. Furthermore, the
treatment can account for first-layer adsorption on
specific sites (such as chemisorption and microporosity)

and still yield the surface-area measurement. In this
latter case, it will separate out the first-layer isotherm
from the contribution of subsequent layers. The equation

without the first-layer specific site adsorption is most



easily wused in the form similar to that discovered by
deBoer and Zwikker as

In[-1In(P/Py)] = -6 + In{-In[P(4=0)/P,]} ,
where
P = the adsorbing gas pressure,
P, = the liquid vapor pressure of the adsorbing gas,
and
§ = the equivalent of one monolayer of adsorbed gas.
With very-high-energy localized sites, the 1isotherm

approaches the Langmuir isotherm at low surface coverages.

1. INTRODUCTION

The primary method used to determine this surface area of finely
divided materials has been physical adsorption of inert gases at low
temperatures on the material’s surface. To the present time, there has
been no method for relating the full isotherm (i.e., all of the data of
pressure vs the amount of adsorbed gas) of the adsorption to the
surface area without some arbitrary assumptions, such as a
proportionality constant. The wusefulness of the Brunaur, Emmett,
Teller (BET)! equation is that it has no such proportionality constant;
however, the BET equation does not fully describe the isotherm.

A recent article by E. L. Fuller? has demonstrated the usefulness
of the shielded physisorption equation, originally referred to as the
"polarization isotherm" and first applied by deBoer and Zwikker.?® The
arguments against this equation were theoretical; that is, polarization
was not sufficient to account for the interactions, and, consequently,
the equation has not been generally applied. The empirical fit to the
isotherm, however, has been known to be excellent, and Fuller suggested
that it was not due to polarization at all but, rather, to the surface
being masked as molecules adsorb. For this reason, he has referred to
this isotherm equation as the "shielded equation." This equation is
applicable from a coverage of essentially zero up to the liquid phase.
Thus, it can yield not only the surface area but also the pore
structure of solids. 1In an earlier report,* it was demonstrated that
the shielded equation is statistically better than any other gas-
adsorption equation. This included the BET equation over the range
where the BET equation is the most precise. Indeed, if we expand the
BET from a two-parameter equation to a four-parameter equation (i.e.,
two independent absorbing planes), the shielded adsorption equation is
still statistically superior. (One of the interesting features of the
shielded equation is that, if we make a similar assumption of multiple
adsorbing planes, we still have a two-parameter fit in the least-



squares fitting to the untransformed equation. Thus, the shielding
equation cannot in a practical sense ever be more than a two-parameter
equation.) This report demonstrates the theoretical foundation for
this shielded equation and gives, for the first time, a method to
unambiguously determine the surface area by using the full
physisorption isotherm. No assumptions are made of any proportionality
constants to arrive at the surface coverage value. This 1is a
significant advancement over all previous theoretical treatments.

It is interesting that this derivation is a simplification in
mathematical representation compared with other theories, such as the
virial representation, and yet it is less restrictive. This is not
philosophically inconsistent; after all, it fulfills a definition of
scientific advance—Ocham’s Razor. Today's cutting edge of this
statement 1is a favorable Student t-test or F-test from statistical
analysis. That criterion has already been met in the previous
publications and is out of the scope of the present discussion.

Two derivations are presented, corresponding to two important
surface conditions. These derivations are for

1. the no-register case in which the molecules are free to travel in
the plane of the surface and

2. the in-register (or epitaxy) case in which the adsorbing molecules'’
motions are restricted in the plane of the surface.

These two cases are compared to determine under what conditions each
applies. The no-register case, considered first, is the case for most
of the physisorption work done with inert gas molecules. This case
applies to the isotherms performed near the gas-liquefaction
temperature at 1 atm. It is widely used for practical surface area
measurements.

2. GAS ADSORPTION ONTO A SURFACE WITH FREE PLANAR TRANSLATION

The first case, the physisorption into a surface condition
resembling the liquid state, is characterized by the complete mobility
of the molecules in the plane of the surface. There is a two-part
attractive surface potential for molecules normal to the surface:

1. the attraction between the molecule and the surface experienced at
positions where there are no intervening adsorbed molecules and

2. the attraction between the adsorbed molecules.

Each molecule is traversing the surface freely enough to experience an
average attractive potential consisting of both of these potentials.
The potentials of the free surface are not strong enough to localize
the position of the adsorbed molecules; thus, the entire surface is
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experienced by each adsorbed molecule. Molecules also do not interfere
with each other's motion on the surface. If two molecules attempt to
occupy the same space, then they simply stack, at least momentarily. A
consequence of this quality is that there is only one statistical "big
box" into which the adsorbing molecules are placed, which determines
the construction of the ensemble. This condition exists even though,
at any one instance, the molecules will have defined positions. 1In
quantum mechanical terms, the following is implied: the energy state of
each adsorbed molecule is higher than the tops of the potential wells
associated with specific positions but low enough to favor staying in
the vicinity of the surface. The molecules are, therefore, reacting to
an average observed potential energy.

With these considerations, the grand canonical ensemble can be
created. Because there is only one box, there 1is only one
configuration seen by the individual molecule. The average potential
is dependent on how many molecules are adsorbed. To obtain the average
energy, first consider extra energy for the surface-adsorbate
attraction. This energy is here defined as the energy in excess of the
adsorbate-adsorbate attraction. The adsorbate-adsorbate attraction is
the energy assumed to exist between all of the adsorbed molecules with
one exception. This exception, which will be discussed later, is for
the interaction between molecules adsorbed in the high-energy localized
sites and second-layer molecules. For the mth molecule adsorbed, the
potential it will observe with assumed absolute randomness (with the
exception of maximizing the ensemble, which comes later) is given by

<Extra Energy for the mth molecule> = (E-¢) (1 - a/A)mul , (1)
where
a = The area of an adsorbed molecule,
A = the total area,
m = the number of molecules adsorbed,
E = the attractive surface-adsorbate potential (E<0), and
€ = the attractive adsorbate-adsorbate potential.

For a more thorough discussion of the reasoning behind Eq. (1), see
Appendix A. The term (1 - a/A)m“1 is the fraction of the surface that
has not been covered after m - 1 molecules have adsorbed, if randomness
is assumed. The total energy for n molecules adsorbed is

n
m-1

<Total Excess Energy> Z (E - €) (1 - a/A) . (2)

m=0

Because mn-1 = n = fA/a and A >>> a, then from the definition of the
value of e,

£l - gAY = 1 - BAET T w et (3)



[Although Eq. (3) is from the definition of the value of e, it may not
be obvious to some readers. A quick way to see that Eq. (3) is correct
and how quickly it converges is to put in some numbers for a, A, and n.
For areas of more than ~20 molecular areas, the error in Eq. (3) is not
experimentally distinguishable. See the discussion on multiple small
surface areas and pores further on.] Furthermore, because there are
many molecules adsorbing, the summation may be replaced with an
integral. The total excess energy is then given by

<Total Excess Energy> = f(E - e)e_edn : 4)

A second energy term results from the interaction of each molecule
with all the other molecules on the surface, or e, where ¢ is the
adsorbate-adsorbate attractive energy. (Keep in mind that each of the
molecules is seeing an average potential and is very mobile on the
surface.) The third energy term is that of the translational energy in
two dimensions. Each translation for each molecule is 0.5 kT, so the
total translational energy is nkT. Ultimately, this translational
difference will be seen as irrelevant. This energy term is indeed
present; however, it is also present on the surface of the liquid
state, against which the derived 1isotherm will wultimately be
referenced. Although not 1likely, one could propose other energy
additions due to molecular energy level during adsorption. States that
have been suggested are the spin states and spin-spin interactions, but
others .could be added. (As will be seen from the derivation below,
this proposal is ultimately irrelevant.) All of these additions may be
expressed as a function f(T) for each molecule for a total of nf(T) of
extra energy. As with the translational energy, these levels should
also be present on the surface of the referenced liquid. Notice that,
although the grand canonical ensemble is constructed as if the
molecules were coming from the gas phase, ultimately the derivation
refers back to the liquid state.

The grand canonical ensemble can thus be written as

-6
—_ = E- dn + + nkT + (T kT
B = F Az g g W EDs ot om sl (5)

n
where

A = the activity of the adsorbate, and

Z = the canonical partition function for the adsorbate on the
surface.

A comment is in order at this point for those who are not familiar
with the grand canonical ensemble. This ensemble is used when the
concern 1is energy transport by addition or subtraction of particles.
The origin of the energy terms is irrelevant, provided a proper
accounting is made of the terms. 1In the original manuscript the term
f(T) was not included since all the terms of this nature were the same



in the referenced liquid state as in the adsorbed state. The same is
true for the terms associated with e, and any argument as to the
orientation of the various molecules with respect to each other is
totally irrelevant. Equation (5), as written, is correct and
conservative and is the grand canonical ensemble as presented in
standard textbooks.

Continuing the derivation, the steps are now according to the
usual rote method, that is, using the maximum term and differentiating
with respect to n

aln(magnterm 2) _ 1n(aZ) - [(E-e)e™® + ¢ + KT + £(TY]/kT .  (6)
To simplify further, one uses In(\Z) = 1n(P), and finds the maximum of

the grand canonical partition function by setting

dln(max term E)
an

=0 . (7)

Therefore
In(P) = [(E - e)e ® + ¢ + £(T)]/KT + 1 . (8)

As § - =, the gas pressure becomes the vapor pressure of the liquid P,.
Thus,

In(P,) = ¢/kT + 1 + £(T)/kT , (9)
as expected.

Equation (9), in the form before the addition of f£(T), was
criticized for not being the form of the equation for the vapor
pressure of a liquid as a function of temperature. This is certainly
incorrect, since one can rearrange Eq. (9) by selecting the standard
state to give the vapor pressure in the form of a linear Van Hoff plot.
Granted, there are heat capacity effects which distort this plot
somewhat, but this is truly a trivial correction. Equation (9) does
indeed correspond to normal liquid behavior.

As § - 0, notice that the vapor pressure does not drop to zero.
This is totally appropriate for this type of phase behavior, that is,

In[P(6 = 0)/Py] = (E - €)/kT . (10)

Note that this equation, indeed, expresses one feature of the observed
adsorption behavior that is normally ignored, that is, there is a
threshold value for the first molecule to be physically (note the
emphasis) adsorbed. This threshold is wusually in the high vacuum
range, if not the ultra-high vacuum range, and not normally observed
directly in physisorption measurements. It is, however, commonly



observed in wultra-high wvacuum work and is observable from an
extrapolation of physical adsorption work, as Fuller demonstrated.
What is more interesting is the argument that Henry’s Law is not
followed. The answer to this argument is first, there is no physical
law that says Henry's Law must be followed in this instance, and
second, it does follow the law within the normally accepted limits of
it application.

From the above equations the final equation is
In(P/P,) = eﬂln[P(ﬁ = 0)/P,] . (11)

Notice that the function f(T) is indeed irrelevant when the isotherm is
expressed in the practical form of Eq. (1l1). When this equation was
applied to the isotherms and tested statistically, the untransformed
form was used. This was true for the fit to the BET equation as well.
For a quicker and easier method of determining 6, the following
transformed equation may be more useful:

In[-1In(P/Py)] = -6 + In{-1In[P(8 = 0)/P,]} . (12)

The value of # or the amount per surface area is directly obtainable
from this equation through a linear fit of the adsorption data, or

surface area = — ATeE bid - Kl st X conversion factor
d{In[-1In(P/Py) ]} ’

molecule

where the conversion factor is the number of molecules per unit amount
appropriate to the measurement.

3. INSENSITIVITY TO SURFACE POTENTIAL HETEROGENEITY

It is easy to demonstrate that the no-register case is not
affected by differing potentials on the surface. Assuming a mixture of
surface patches (due to different planes, inhomogeneous chemical
composition, or whatever) labeled 1,2...n with the following:

Ei,E,,...E, = attractive potentials peculiar to each patch,
X1,X5,...X, = amount adsorbed on each patch, and
01,03,...0, = surface area of each patch,

results in

b = Xp/0n (13)



Each patch is independent; therefore,

In[-1n(P/Py)] = -6, + 1n(-E;/kT)
In[-1In(P/Py)] = -6, + 1n(-E,/kT)
: = . (14)
In[-In(P/Py)] = -6, + 1n(-E_/KT)
Multiplying each by its respective o's and adding
Aln[-1n(P/Py)] = ). X, + ). o 1n(-E_/kT) (15)
m m
where
A=Yo . (16)
m

Letting <E> be the geometrical average energy which is weighted by the
area, or

<E> = IE, (0,/A) (17)

then
In[-1n(P/Py)] = -6 + ln(-<E>/KT) (18)

where
§ = (LX)/A (19)

or the overall surface coverage. Thus, the isotherm equation 1is not
sensitive to patches of high and low energy and yields an overall
coverage and a geometric average surface energy. This result is
important for the discussion in the next section, where there are high-

energy sites on the surface that can immobilize some to the first-layer
molecules.

What is stated above is that the equation is invariant with a
heterogeneous surface, which does not imply that the surface area or
the adsorption energy cannot change with some physicochemical
treatment. One of the practical implications of the above discussion
is that the no-register isotherm is always a two-parameter fit and can
never be expanded to more. The BET equation, however, can be expanded
to high parameter fits by assuming heterogeneity (i.e., the actual form
of the equation changes). This 1is also true of many of the other
isotherms such as the virial equations.



4. GAS ADSORPTION ONTO A SURFACE WITH EPITAXY

Inclusion of the in-register or epitaxy assumes there are discrete
positions of the surface. These positions can effectively immobilize
the adsorbed molecules. Two likely sources for the high-energy
immobilizing sites are

1. imperfections on the surface, such as impurities and micropores, and

2. regular, periodic high-energy adsorption sites that possibly cannot
all be filled due to steric interferences between the adsorbing
molecules.

The assumption made in this section amounts to saying that the
energy of the adsorbate molecules 1is less than the top of these
particular potential wells on the surface, and the residence time at
each well is large compared to the time of its translation on the
surface. This condition will be assumed for the first layer of
adsorbed molecules. Beyond the first layer, the assumptions of the
previous derivation will be used with one exception—the excess energy
or extra surface potential is decreased proportionally by the coverage
in the first layer; thus, the extra energy term for the mth molecule in
layers other than the first is now

<Extra Energy> = [(E - €) (1 - «) + ¢] (1L - a/A)™? | (20)
where
= ia/A and is the first-layer surface coverage, and
i = the total number of first-layer adsorbate molecules.
The distribution for the first layer is the familiar one:
First-L Combi i L
irst-Layer Combinations = T (N - D! (21)

where
N = the number of the high-energy localized surface sites.

The distribution for subsequent layers is assumed to be the same

as the no-register case (i.e., the "big box"). Using the following
definitions:
j = the total number of molecules in layers subsequent to the first

layer, and
the coverage due to all layers except the first one so that § =
x + B,

i)
I



10

then the grand partition function is
=37 N1 + Az
i3 1t (N-i)!

. -{E; + JUE - @ - « + e1ePdy + SKT + JE(T)}/KT
¢ (22)

Differentiating the log(max term E) with respect to i, setting it to
zero, and noting that the value of Ea/A is very small (from the
differentiation of E[l - «) result in

In(P) = In[e/(1 - x)] + E/KT (23)
which is the Langmuir isotherm in the first layer.
Differentiating with respect to j and setting it to zero gives
In(P) = {[(E - e)(1 - <) + e]e_ﬁ + ¢ + £(T)}/KT + 1 . (24)

Again as § - « the pressure becomes P,. However, as § - 0 at some
pressure, the coverage in the subsequent layers goes to zero. This 1is
similar to the condition before; however, the total coverage does not
drop to zero. Overall,

. if § » 0, then P - 0 . (25)

Taking the log of the equation above yields a function similar to that
used for the no-register case.

In[-1n(P/Py)] = In{-[(E - €)(1 - «) + €]/KkT} - B . (26)
As the pressure increases, « - 1 and the equation approaches the line
In[-1In(P/Py)] = In(-€¢/kT) - B . (27)

To ensure that most of the first-layer effects are not present in the
slope, we use an offset in the subsequent layer coverages of at least f
> 1, so that P/P, > 0.51. Above this value, it would be safe to take
the slope as before to determine the surface area.

Note that the pressure criterion of P/P, > 0.51 is not quite high
enough to encounter macroporous problems upon adsorption (but maybe not
desorption). This illustrates one of the strengths of this method of
analysis. The answer for the surface area is obtained in a pressure
range that is not affected by surface inhomogeneities, micropores,
registry considerations, or macropores. Mesopores will also not affect
the isotherm analysis greatly, since they will not alter the general
shape of the curve but, rather, will produce steps. This condition can
be seen by examining the original approximation made to arrive at the
exponential term e . Assume, for example, a large number of mesopores
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of a cross-sectional area of exactly ten molecules. Now, instead of a
"big box" or individual sites, we have a box of intermediate size. ?%e
breakdown of the approximation that leads to the exponent term, e ',
will yield a step at each of the coverages of 0.1, 0.19, 0.27, 0.34,
0.41, 0.47, 0.52, etc. The more gas that is adsorbed, the closer the
steps become, until they fade into the experimental error.

In this section, the most rigorous condition was assumed for the
in-register, first layer (call it the perfect epitaxy)—for a full
first layer, each high-energy site was filled and there is perfect
coverage (no gaps in close-packed fashion). It would be very unusual
for such a condition to exist even for perfectly regular, close-packed
planes, since either some steric hindrances or undersizing are likely.
The coefficient in the excess energy term is more like

[(1 - «f) (E - €) + €] (28)

where £ < 1. Working through each case is not necessary due to the
additivity principle described in the previous section. The result is
the same as if we were to add two weighted isotherms. This is done in
the log(-log) form of the equation (as done previously). One of these
isotherms is the perfect epitaxy case weighted by an area of f, and the
other is the no-register case weighted by an area of 1 - f.

This additivity makes the analysis of the low-pressure deviations
from the no-register case simple. Subtraction of the extrapolated
curve from the experimental curve yields the first-layer isotherm only.
This capability could prove to be an extremely useful tool for analysis
of the surface state of materials.

5. COMPARISONS OF THE ISOTHERMS

A few isotherms are generated here to illustrate the use of the
analysis. Figure 1 shows four generated isotherms for which E/kT is
1.0, 3.0, 5.0, and 10.0. Analysis of the 3.0, 5.0, and 10.0 curves by
the BET method yielded a surface coverage of 1.05, 0.84, and 0.60,
respectively (along with the BET constants of 4.8, 13, and 35). The
BET analysis of the 1.0 curve is wuncertain but yields a surface
coverage of between 1.0 and 2.5. To generate curves for the epitaxy
case, a value of ¢/kT needs to be selected. For argon this value is
about 8.9, for nitrogen it is about 8.6. Using the argon value, the
isotherms of Fig. 2 were generated with E/kT values of 1.0, 2.0, 4.0,
and 8.0. Figure 3 shows the same data plotted in the log(-log) form.
The approach to the slope of 1.0 and the approach to an intercept on
the log(-log) axis of 3.2 with higher coverages are evident.
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6. CONCLUSION

- The shielded equation is obviously a very powerful description of
the sorption isotherm. It is now possible to obtain from this equation
an unambiguous number for the surface area. Other information is also
available from this isotherm treatment that, with more thorough data
collection wusing computerized instruments, will be wuseful for
characterizing the surface. For the macroporosity information, this
characterization has already been demonstrated in refs. 2 and 3, using
the shielded equation.
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Appendix A
THE EXTRA ENERGY OF THE mth ADSORBED MOLECULE

For ease of discussion, consider a surface which has just enough
room for 10 molecules. Define the energy of adsorption referenced
against the liquid state. Thus the energy of adsorption for the very
first molecule is

E - € for the molecule #1 , (A1)

because we are assuming that the molecule has to leave the liquid state
and must take up the energy ¢ to do so (Endothermic). It then releases
the energy E (Exothermic) when it adsorbs on the surface in question.
Notice that (though not relevant) both are less than O by the normal
thermodynamic convention. The total amount of surface now left
completely bare is 90% of the original surface.

When molecule 2 adsorbs, only 90% of the surface is available for
direct adsorption and 10% for adsorption on the first layer.
Adsorption onto the first layer releases an energy of ¢ instead of E.
Thus, on an average, the energy for the second molecule is

0.9(E - €) + 0.1(e - €) or (A2)
0.9(E - €¢) for the molecule #2 . (A3)

It could be argued at this point that the first molecule jumps on
top of the second molecule and that only molecule #2 is now on the

surface. However, since the molecules are indistinguishable, molecule
#1 takes up the role of molecule #2, and the total energy remains the
same. Thus, in the classical framework it is irrelevant whether

molecule #2 skates under or over molecule #1 when they meet. The total
amount of surface now left bare, on an average, is 90% of 90% of the
original or 81%. When molecule #3 adsorbs, only 81% of the surface is
available for direct adsorption. By an argument similar to that put
forth for molecule #2, on an average, the energy for the third molecule
is

0.81(E - €) for the molecule #3 . (AL)

Notice that for each molecule added this is a progression of
(L - 0.1)"(E - ¢) for the mth molecule . (A5)
Also notice that the energy term never drops to =zero. The 10th

molecule does not complete the coverage of the entire surface but
rather leaves (1 - 0.1)°% or 0.387 of the surface open.
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If we use the value a for the surface area that one molecule can
cover and ‘A as the total surface area, then the relationship

<Total Energy mth molecule> = (1 - a/A)mﬂ(E - €) (A6)

should be apparent.
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