CHEM 1110 test 4 – Summer 2008

2008 copy 100

page 1

- 1) Which of the following compounds have dipole moments (are polar)?
 - O_2 H_2O CO_2 CH_3OCH_3 CH_3F
- 2) Which of the following compounds have dipole moments (are polar)? CH_2F_2 NH_3 SO_3 SO_2 PF_5
- 3) Which of the following compounds have will "hydrogen bond" to another similar molecule?

 H_3PO_4 SO_2 CH_4 CH_3COOH H_2O

4) Which of the following compounds have will "hydrogen bond" to another similar molecule? CO_2 CH_3OCH_3 HF CH_2F_2 NH_3

- 5) Arrange the following in order of increasing London forces. SiH₄, CH₄, GeH₄, SnH₄
- 6) Arrange the following in order of increasing London forces. HCOOH, C_2H_5COOH , $C_6H_{13}COOH$, CH_4COOH
- 7) Calculate the vapor pressure of ethanol at 57.8 °C. The boiling point of ethanol is 78.3 °C and its molar enthalpy of vaporization is 39.26 kJ mol⁻¹. R = 8.314 J mol⁻¹ K⁻¹
- 8–9) What is the classification of each of the following solids? (ionic solid, covalent solid, metallic solid or molecular solid)

 $H_2O(s)\ ,\ NaCl\ \ ,\qquad gold\ \ ,\qquad CaCl_2\ \ ,\qquad CH_4(s)$

 10) – 11) What are the strongest types of forces or bonds responsible for forming the solid phase for each of the following? (ionic attractions, covalent bonds, metallic bonding, "hydrogen bonding", dipole–dipole attraction, London forces)

 $diamond \;, \qquad iron \;, \qquad teflon \;, \qquad solid \; Ar \;, \qquad HCI(s)$

12) – 13) What is the van't Hoff factor for each of the following? (If it does not dissociate: i = 1.)

 HNO_3 , NH_3 , $HCIO_2$, Na_2SO_4 , NaCI

CHEM 1110 test 4 – Summer 2008

- 14) Calculate the total molality for a solution made up to be 5.77 g in NaCl in 380.7 g of water.
- 15) Calculate the freezing point depression for a solution made up to be 4.73 g in CaCl₂ in 335.2 g of water. ($K_f = 1.86 \ ^{\circ}C \text{ kg mol}^{-1}$)
- 16) Calculate the osmotic pressure for a solution of water containing 37.4 g of CH₃COOH in 2.539 L of water solution at 25 °C. R = 0.08206 L atm mol⁻¹ K⁻¹
- 17) What is the vapor pressure of water over a solution that contains 19.50 g of ethanol (C_2H_5OH) in 214.9 g of water if at the measurement temperature the vapor pressure would be 49.43 torr for pure water? Give your answer to **4 significant figures**.
- 18) What is the molar mass of a non–electrolyte compound if when 5.0333 g of it are dissolved in 66.7 g of water, it will lower the freezing point by 3.19 °C? ($K_f = 1.86$ °C kg mol⁻¹)
- 19) What is the principal reason that the boiling point of HF is much greater than HCI
- 20) What is the principal reason that the melting point of H_2O is much greater than H_2S

NAME_____

For question 1 through 4 circle the correct answer.

1)	O_2 H_2O CO_2 CH_3OCH_3 CH_3F	polar polar polar polar polar	non–polar non–polar non–polar non–polar non–polar				
2)	CH_2F_2 NH_3 SO_3 SO_2 PF_5	polar polar polar polar polar	non–polar non–polar non–polar non–polar non–polar				
3)	$\begin{array}{l} H_3PO_4\\ SO_2\\ CH_4\\ CH_3COOH\\ H_2O \end{array}$	hydrogen hydrogen hydrogen hydrogen hydrogen	bonded bonded bonded bonded bonded	not hy not hy not hy not hy not hy	/drogen /drogen /drogen /drogen /drogen	bonded bonded bonded bonded bonded	
4)	CO_2 CH_3OCH_3 HF CH_2F_2 NH_3	hydrogen hydrogen hydrogen hydrogen hydrogen	bonded bonded bonded bonded bonded	not hy not hy not hy not hy not hy	/drogen /drogen /drogen /drogen /drogen	bonded bonded bonded bonded bonded	
5)		_ <		<		<	
6)		_ <		<		<	
7)				_	units!		
8–9	9) H ₂ O(s) =						
	NaCl =						
	gold =						
	CaCl ₂ =						
	CH ₄ (s) =						

NA	ME	
10–	-11) diamond =	
	iron =	
	teflon =	
	solid Ar =	
	HCI(s) =	
12–	-13) HNO ₃ <i>i</i> =	
	NH ₃ <i>i</i> =	
	HCIO ₂ <i>i</i> =	
	Na ₂ SO ₄ <i>i</i> =	
	NaCl <i>i</i> =	
14)		units!
15)		units!
16)		units!
17)		units!
18)		units!
19)		
20)		

KEY

1)	O ₂	non–polar
	H ₂ O	polar
	CO_2	non–polar
	CH_3OCH_3	polar
	CH₃F	polar

- 3) H_3PO_4 yes SO_2 no CH_4 no CH_3COOH yes H_2O yes
- 5) CH_4 , SiH_4 , GeH_4 , SnH_4
- 6) HCOOH , CH₄COOH , C2H5COOH , C₆H₁₃COOH
- 7) 0.435 atm

8–9)

 $H_2O(s)$ = molecular solid NaCl = ionic solid gold = metal CaCl₂ = ionic solid CH₄(s) = molecular solid

KEY

10–11) diamond = covalent bond throughout iron = metallic bond teflon = covalent bond throughout solid Ar = London forces HCI(s) = dipole-diple forces 12–13) $\dot{HNO}_3 = 2$ NH_3 = 1 $HCIO_2 = 1$ $Na_2SO_4 = 3$ NaCl = 2 14) 0.519mol kg⁻¹ 15) 0.710 °C (or K) 16) 6.00atm 17) 47.74 torr 18) 44.0 g mol⁻¹

- 19) "hydrogen bonding"
- 20) "hydrogen bonding"