Copy 103 page 1

Equations

$$= CRT$$
 $\ln(P_1/P_2) = \mathbf{H}_{\mathbf{v}}/R(1/T_2 - 1/T_1)$

$$T_b = K_b b$$
 $T_f = K_f b$ $P = X P^o$

Fill in the correct answer on the answer sheet.

1) Identify which molecules have a dipole and which ones do not.

 $CO CH_2Cl_2 CO_2 SO_2 CH_4$

2) Identify which compounds have (self) hydrogen bonding.

H₂CO NH₃ HCN HF CH₃NH₂

- 3) The boiling point of acetone is 56.5 °C and the $\mathbf{H}^{\Theta}_{\text{vaporization}}$ is 13.77 kJmol⁻¹. What is the vapor pressure at 39.9 °C?
- 4) What are the strongest forces that hold the solid together for the following compounds?

NaOH Xe CO diamond CH₂F₂

Choose from: ionic–ionic bonding, covalent bonding, hydrogen bonding, dipole–dipole attraction, or London forces.

5) Tell what the classification for each of the following is.

NaOH Xe Ag Au–Cu alloy Ar

Choose from: ionic solid, covalent solid, metal, or molecular solid.

- 6) Calculate the molality of a solution created by mixing 12.3 g of CH_3OH and 163.1 g of water.
- 7) Calculate the (total or ionic) molality of a solution created by mixing 14.3 g of KBr with 150.4 g of water.
- 8) What is the mole fraction of water in a solution that has 83.60 g of CH_3OH and 559.53 g of water?
- 9) What is the osmotic pressure of a solution that has 58.70 g of ethylene glycol (HCOHCHOH) and 169.34 mL of water at 25°C?
- 10) The vapor pressure of ethanol at 19°C is 40.00 torr. What is the vapor pressure of ethanol for a solution that is 35.00 g ethylene glycol (HCOHCHOH) and 214.40 g of water? Give the answer to 4 significant figures.
- 11) 9.65 g of ScBr₃ is dissolved in 42.9 g of water. What is the freezing point lowering for this solution? The K_f for water is 1.86 °C kg mol⁻¹. The molar mass of ScBr₃ is 284.66 g mol⁻¹. Give your answer to **4 significant figures**.

CHEM 1110 test 4 for Spring 2009

- 12) 0.496 moles of a non–electrolyte is dissolved in 333 g of acetic acid. What is the freezing point lowering? The K_f for acetic acid is 3.90 K mol⁻¹ kg.
- 13) Give the van't Hoff factor for each of the following:

CaS	E)	$Ba(OH)_2$
MgBr ₂	F)	CH_3NH_2
HC1	G)	CH ₃ CHO
HF	H)	C ₆ C ₅ OH
	CaS MgBr ₂ HCl HF	CaSE) $MgBr_2$ F) HCl G) HF H)

14) Place the following in the proper sequence for increasing London forces:

A)	Na	Li	Κ	Cs	Rb
B)	$C_{5}H_{12}$	C_2H_6	CH_4	$C_4 H_{10}$	C_3H_8
C)	NF ₃	NBr ₃	NCl ₃	NI ₃	NAt ₃
D)	Cl_2	At ₂	F_2	I_2	Br ₂

For questions 15 through 20, use the CO_2 phase diagram.

15) On the CO_2 phase diagram, identify what region N is.

16) On the CO_2 phase diagram, identify what region X is.

17) On the CO_2 phase diagram, identify what point Q is.

18) On the CO_2 phase diagram, identify what line R is.

- 19) Write all the equilibria associated with line S.
- 20) Write all the equilibria associated with point Q.

ANSWER SHEET

NA	ME			
1)	СО	polar	no dipole	
	CH_2Cl_2	polar	no dipole	
	CO ₂	polar	no dipole	
	SO ₂	polar	no dipole	
	CH_4	polar	no dipole	
2)	H ₂ CO	has hydroger	n bonding	no hydrogen bonding
	NH ₃	has hydroger	n bonding	no hydrogen bonding
	HCN	has hydroger	n bonding	no hydrogen bonding
	HF	has hydroger	n bonding	no hydrogen bonding
	CH ₃ NH ₂	has hydroger	n bonding	no hydrogen bonding
3)			_	
4)	NaOH			_
	Xe			_
	CO			_
	diamond_			_
	CH ₂ F ₂			_
5)	NaOH			_
	Xe			_
	Ag			_
	Au–Cu al	lloy		
	Ar			_
6)				

ANSWER SHEET

NAME					
7)					
8)	_				
9)	_				
10)					
11)	_				
12)	_				
13) A) CaS $i = _$ B) MgBr ₂ $i = _$ C) HCl $i = _$ D) HF $i = _$ E) Ba(OH) ₂ $i = _$ F) CH ₃ NH ₂ $i = _$ G) CH ₃ CHO $i = _$ H) C ₆ C ₅ OH $i = _$					
14) A) smallest	_ <	_ <	_ <	_ <large< th=""><th>est</th></large<>	est
B) smallest	_ <	_ <	_ <	_ <large< td=""><td>est</td></large<>	est
C) smallest	_ <	_ <	_ <	_ <large< td=""><td>est</td></large<>	est
D) smallest	_ <	_ <	_ <	_ <large< td=""><td>est</td></large<>	est
15)		_			
16)		_			
17)		_			
18)		_			
19)					
20)		_			

KEY

1)	$\begin{array}{c} \text{CO} \\ \text{CH}_2\text{Cl}_2 \\ \text{CO}_2 \\ \text{SO}_2 \\ \text{CH}_4 \end{array}$	polar polar no dipole polar no dipole			
2)	H ₂ CO NH ₃ HCN HF CH ₃ NH ₂	no hydrogen bonding has hydrogen bonding no hydrogen bonding has hydrogen bonding has hydrogen bonding			
3)	0.766 atm	ı	13)	A) B)	$\begin{array}{ccc} \text{CaS} & \text{i} = \underline{2} \\ \text{MgBr i} = \underline{3} \end{array}$
4) 5)	NaOH Xe CO diamond CH ₂ F ₂ NaOH Xe Ag Au–Cu al Ar	ionic–ionic London dipole–dipole covalent dipole–dipole ionic solid molecular solid metal loy metal molecular solid	14)	B) C) D) E) F) G) H) smallest smallest smallest smallest	$\begin{split} \text{MgBr}_{2} &= \underline{5} \\ \text{HCl} i = \underline{2} \\ \text{HF} i = \underline{1} \\ \text{Ba}(\text{OH})_{2} &= \underline{3} \\ \text{CH}_{3}\text{NH}_{2} &i = \underline{1} \\ \text{CH}_{3}\text{CHOi} &= \underline{1} \\ \text{CH}_{3}\text{CHOi} &= \underline{1} \\ \text{C}_{6}\text{C}_{5}\text{OHi} &= \underline{1} \\ \text{Li} &< \text{Na} < \text{K} < \text{Rb} < \text{Cs} \text{largest} \\ \text{CH}_{4} < \text{C}_{2}\text{H}_{6} < \text{C}_{3}\text{H}_{8} < \text{C}_{4}\text{H}_{10} < \text{C}_{5}\text{H}_{12} \text{largest} \\ \text{NF}_{3} < \text{NCl}_{3} < \text{NBr}_{3} < \text{NI}_{3} < \text{NAt}_{3} \text{largest} \\ \text{F}_{2} < \text{Cl}_{2} < \text{Br}_{2} < \text{I}_{2} < \text{At}_{2} \text{largest} \end{split}$
6)	2.36 mol	kg^{-1}	15	1 1	
7)	1.60×10^{6}	$\times 10^{0} \text{ mol kg}^{-1}$		liquid	
8)	X = 0.92			16) triple point	
9)	PI = 141.2	28 atm	17)	nquia-so	nd phase boundary
10)	X = 38.13	3 torr.	19)	$CO_2(g) \rightleftharpoons$	$CO_2(l)$
11)	5.88 K		20)	$CO_2(g) \rightleftharpoons$	$CO_2(s) \rightleftharpoons CO_2(l)$
12)	5.81 K				