$$\Delta p = h$$
 $\Delta x \Delta p \approx h$

$$\lambda p = h$$
 $\Delta x \Delta p \approx h$ $h = 6.626 \times 10^{-34} \text{ m}^2 \text{ kg}^{-1} \text{ s}^{-1}$

Electron mass = 9.11×10^{-31} kg, Neutron mass = 1.675×10^{-27} kg, Proton mass = 1.673×10^{-27} kg p = mv (Thus, units for momentum are kg m s⁻¹)

Be sure you always provide the proper units $(\frac{1}{2})$ off! Be sure you always provide the proper number of significant figure (1/2) off!

An electron's uncertainty in velocity is 2.30×10^3 m s⁻¹ due to being confined. What is the uncertainty in its position?

2) A proton is confined to a space of 2.13×10^{-1} m. What is the uncertainty in its velocity?

ANS:_____

3) For the following overall reactions, give the net ionic reaction.

 $FeCl_2(aq) + Na_2S(aq) \rightarrow FeS(s) + 2NaCl(aq)$

ANS: _____

 $Fe(NO_3)_3(aq) + 3NaOH \rightarrow Fe(OH)_3(s) + 3NaNO_3$

ANS:

 $H_3PO_4 + NaOH \rightarrow NaH_2PO_4 + H_2O$

ANS:

 $H_3PO_3 + 2KOH \rightarrow K_2HPO_3 + 2H_2O$

- Arrange the following atoms in order of size, from large to small according to the general periodic trend.
 - A) O, N, C, Be, B, Li

Large _____ > ____ > ____ > ____ > ____ Small

B) S, P, Si, Mg, Al, Na

Large > > Small

Arrange the following atoms from high electronegativity to low electronegativity according to the general trend.

A) Se, As, Ge, Ca, Ga, K

High > > Low

B) Ni, Mn, Cr, Ti, V, Sc

High ____ > ___ > ___ > ___ Low

Complete the following Brønsted–Lowry for acid–base reactions. On the following line label the reactants and products appropriately as "acid 1", : "acid 2", "base 1" and "base 2".

 $C6H5NH_2 + HF$

 $H_2NNH_3^+$ + H_2SO_4

CH₃NH₂ + HClO₃

 $NH_3 + H_2SO_4 \rightarrow$

Give the electron configuration according to the aufbau principle based on the hydrogen atom for the following atoms.

Mo : _____

Pd:

8) Give the value(s) (that is, give all possible values) for the quantum numbers for the highest energy electron in the following atoms in the ground state.

Tl:

n =_____ 1 =_____ $m_i =$ _____

 $m_s = \underline{\hspace{1cm}}$

Cl:

 $n = \underline{\hspace{1cm}}$ $1 = \underline{\hspace{1cm}}$ $m_l = \underline{\hspace{1cm}}$ $m_s = \underline{\hspace{1cm}}$

Dy:

n=____

1 = _____ m_i = ____

 $m_s =$

In:

 $1 = _{_{_{_{1}}}}$ $m_{_{1}} = _{_{_{_{1}}}}$

 $m_s = \underline{\hspace{1cm}}$

In the spaces provided, give the proper Lewis dot structures for the following compounds. Use the convention with the double arrow for resonance.

9) NH₄⁺

10) SO_4^{2-}

11) NO_3^-

12) CH₃NH₂

13) CH₃SH

14) C_6H_6 ring

15) CO₂

16) SO₂

What is the electronic and molecular geometry for the following molecules? If there are more than one central atom, give the geometry of both.

17A) H₂CNH Electronic = Molecular =

17B) COS Electronic = Molecular =

18A) SO₃ Electronic = Molecular =

18B) NO_2^- Electronic = Molecular =

19) Does the molecule HCCH have a rotation that is hindered. Give you reason for your answer.

YES? ____ NO? ___ Why?____

20) Does the molecule CH₃SH have a rotation that is hindered. Give you reason for your answer.

YES? ____ NO? ___ Why?___

 F^{-}

base 2

+

C6H5NH₃⁺

acid 1

KEY

1)
$$3.16 \times 10^{-7}$$
 m

2)
$$1.86 \times 10^{-6} \text{ m s}^{-1}$$

3)
$$Fe^{2+} + S^{2-} \rightarrow FeS$$

$$Fe(^{3+} + 3OH^{-} \rightarrow Fe(OH)_{3})$$

$$H_3PO_4^{2-} + OH^- \rightarrow H_2PO_4^{-} + H_2O$$

$$H_3PO_3 + 2OH^- \rightarrow HPO_3^{2-} + 2H_2O$$

4)
$$Li > Be > B > C > N > O$$

5)
$$Se > As > Ge > Ga > Ca > K$$

6)
$$C6H5NH_2$$
 + HF \rightarrow acid 2

$$CH_3NH_2$$
 + $HClO_3$ \rightarrow $CH_3NH_3^+$ + $HClO_3^-$ base 1 acid 2 base 1

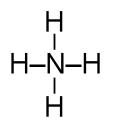
$$NH_3$$
 + H_2SO_4 \rightarrow NH_4^+ + HSO_4^- base 1 acid 2 acid 1 base 2

7) Mo: $[Kr]5s^24d^4$

Se: $[Ar]4s^23d^{10}4p^4$

La: $[Xe]6s^24f^1$

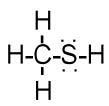
 $Pd:\,[Kr]5s^24d^8$

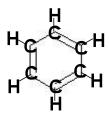

KEY

8) T1:
$$n = 6$$
 $l = +1$ $m_l = -1.0.+1$ $m_s = \pm \frac{1}{2}$

C1:
$$n=3$$
 $1=+1$ $m_1=-1.0.+1$ $m_2=\pm \frac{1}{2}$

Dy:
$$n = 4$$
 $1 = +3$ $m_1 = -3, -2, -1.0. +1, +2, +3$ $m_2 = \pm \frac{1}{2}$


In:
$$n = 5$$
 $1 = +1$ $m_1 = -1.0.+1$ $m_2 = \pm \frac{1}{2}$



11)
$$NO_3^-$$

13) CH₃SH

14)
$$C_6H_6$$
 ring

KEY

17A) H₂CNH: hybrid = sp² and sp² electronic = trigonal molecular = trigonal and bent 120°

17B) COS: hybrid = sp electronic = linear molecular = linear

18A) SO_3 : hybrid = sp^2 electronic = trigonal molecular = trigonal

18B) NO_2^- : hybrid = sp² electronic = trigonal molecular = bent 120°

19) HCCH hindered? NO Why? triple bond

20) CH₃SH hindered? NO Why? single bond