NAME:

Answer the questions on this test sheet

1) The following reaction was performed in a rigid volume and the temperature was returned to the starting temperature. HF gas is reacted with an excess of SiO_2 . The starting pressure for the HF is 17.7 MPa. What is the final pressure of the SiF_4 gas?

 $4HF(g) + SiO_2(s) \rightarrow SiF_4(g) + 2H_2O(g)$

 $P(SiF_4) = 4.43 \text{ MPa.}$

2) The following reaction was initiated at 292° C at 4.07 atm of CH_4 atm in a constant volume container. The O_2 was in excess. At the end of the reaction the temperature was 469° C. What was the final pressure of the H_2O gas?

 $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O(g)$

 $P(H_2O) = 10.7 \text{ atm.}$

Draw the Lewis dot structure for the following compounds:

3) H₃CNH₂

4) H₃CCH₃

5) HNO

6) HCCH

(HNO₂ = H-O-N=O:)

NAME:

Draw the Lewis dot structure for the following compounds:

7) HCN

8) C_6H_6 in a ring

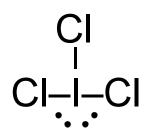
H–C≡N:

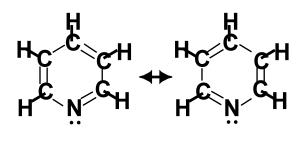
9) NO₂

$$\left[\vdots \ddot{\bigcirc} - \ddot{\mathsf{N}} = \ddot{\bigcirc} \right]^{-} \longleftrightarrow \left[\vdots \ddot{\bigcirc} = \ddot{\mathsf{N}} - \ddot{\bigcirc} \right]^{-}$$

10) SO₃

11) SF_5^-


12) AlF_6^{3-}


NAME:			

What are the electronic and geometrical shapes for the following compounds or ions? If there is more than one central atom for a compound or ion, give the geometry for both. (SEE BELOW for LEWIS DOT)

- 13) ICl₃ electronic: trigonal bipyramid molecular: T-shaped
- 14) $C_5H_5N Cs$ and Ns in a ring electronic: trigonal molecular: $C = trigonal + N = bent 120^{\circ}$
- 15) HNNH electronic: trigonal molecular: bent 120°
- 16) CH₄ electronic: tetrahedral molecular: tetrahedral
- 17) Give the electron cofiguration for the following element according to the aufbau principle based on the hydrogen atom.
 - Ar: $1s^22s^22p^63s^23p^6$
 - F: $1s^22s^22p^5$
- 18) Give the electron cofiguration for the following element according to the aufbau principle <u>based on the hydrogen atom</u>. Use the core (short cut) method on these.
 - Er: $[Xe]6s^24f^{12}$
 - La: [Xe]6s²4f¹
- 19) Which of the following have the rotation hindered. Tell why it the rotation is or is not hindered.
 - H₂CCH₂: hindered double bond
 - HCCH: not hindered triple bonded
 - ClH₂CCH₂Cl: not hindered single bonded
 - H₃CCH₃: _____not hindered single bonded
- 20) The following reaction: $N_2 + 3H_2 \rightarrow 2NH_3$ took place in a rigid container. The starting temperature was $122^{\circ}C$ and the partial pressure of the H_2 was initially 21.5atm. After the reaction is complete, The temperature increased to 311°C. What was the final NH_3 pressure?

$$P(NH_3) = \underline{\hspace{1cm}} 21.2 \text{ atm} \underline{\hspace{1cm}}$$

15)

16)