Answer the following questions on the answer sheet.

$$
\begin{array}{ll}
N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & T_{K}=t_{{ }^{\circ} \mathrm{C}}+273.15 \\
\boldsymbol{V}_{\mathrm{STP}}=22.4 \mathrm{~L} \mathrm{~mol}^{-1} & R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \\
v_{l} \mathrm{~mol}^{-1} \\
v_{l} / v_{2}=\sqrt{m_{2} / m_{l}} & \left(P+\left[a n^{2} / V^{2}\right]\right)(V-b n)=n R T
\end{array}
$$

1) Calculate the molarity of a solution made with 19.4 g of $\mathrm{Ca}_{3}\left(\mathrm{PO}_{2}\right)_{2}$ in 306.5 mL of water solution. ANS: $\underline{0.257 \mathrm{M}}$
2) What is the molarity of a solution would one get if 306 mL of $9.62 \mathrm{~m} \mathrm{NH}_{3}$ solution is diluted to 2.004 L . ANS: 1.47 m
3) In the following reaction 26.35 mL of $0.1325 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ is reacted with 48 mL of NaOH . What is the concentration of the NaOH ?
$\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$.
ANS: 0.1455 m
4) 26.42 kg of NaOH is neutralized with $5.89 \mathrm{~m} \mathrm{H}_{2} \mathrm{SO}_{4}$. How many liters of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required? (Be careful with the units.)
The reaction is: $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
ANS: 56.1 L
5) What volume of $7.87 \mathrm{M} \mathrm{FeCl}_{2}$ solution is needed to make 659.0 mL of a 0.724 m solution?

ANS: 60.6 mL
6) How many grams of NaCl are needed to create 56.0 mL of a 0.873 m solution?

ANS: 2.857 g
7) How many liters of HF at STP are required to create 552 mL of a 0.132 m solution?

ANS: $\underline{1.63 \mathrm{~L}}$
8) What volume does 2.56 mol of CH_{4} gas occupy at STP?

ANS: 57.3 L
atm
9) In the following reaction, $6.46 \pm$ of $\mathrm{C}_{2} \mathrm{H}_{6}$ is reacted with an excess of O_{2} in a rigid container. The temperature is returned to the initial temperature. What is the final pressure of CO_{2} ?

$$
2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}
$$

ANS: $\underline{12.92 \mathrm{~atm}}$
10) What volume does 1.28 g of HF gas occupy at $0^{\circ} \mathrm{C}$ and 1.00 atm pressure?

ANS: 1.433 L
11) N_{2} is contained in 5.04 L at a pressure of 1.48 atm and a temperature of $110.8^{\circ} \mathrm{C}$. How many moles of N_{2} are there?
ANS: $\underline{0.237 \mathrm{~mol}}$
12) 55.0 g of HBr are contained in 640 mL at $167^{\circ} \mathrm{C}$. What is the pressure of this ideal gas?

ANS: 38.4 atm
13) What mass of HCl is required to fill a volume of 7.35 L at a pressure of 538 torr and a temperature of $25.1^{\circ} \mathrm{C}$?
ANS: 7.751 g
14) The molar mass of a liquid is determined by the Dumas method. The volume of the flask used was 855 mL . The mass of the flask before the experiment was 50.8143 g . After the experiment, the mass was found to be 52.2533 g . The atmospheric pressure at the time was 768.0 torr. What is the molar mass of the liquid? (A boiling water bath was used to vaporize the liquid at $100.0^{\circ} \mathrm{C}$.)
ANS: $\underline{51 \mathrm{~g} \mathrm{~mol}^{-1}}$
15) What volume does 12.1 g of fluorine gas occupy at STP?

ANS: $\underline{7.13 \mathrm{~L}}$
16) What volume does 602 g of xenon gas occupy at STP?

ANS: 103 L
17) Hydrogen is collected over water at $26^{\circ} \mathrm{C}$. The atmospheric pressure is 753.1 torr. What is the pressure of the dry hydrogen? (Vapor pressures are given in the attached table.)
ANS: 726.9 torr (0.956 atm)
18) Using the van der Waal equation, calculate the pressure of 2.14 mole of ethanol contained in a volume of 3.77 L at a temperature of $293^{\circ} \mathrm{C}$.
$a=12.02 \mathrm{~atm} \mathrm{~L}^{-2} \mathrm{~mol}^{-2}$ and $b=0.0841 \mathrm{~L} \mathrm{~mol}^{-1}$
ANS: $\underline{23.8 \mathrm{~atm} \quad(26.4 \mathrm{~atm} \text { ideal. dfference }=2.5 \mathrm{~atm})}$
19) Helium diffuses 7.01 times faster than an unknown gas. What is the molar mass of the unknown gas? ANS: $\underline{196.4 \mathrm{~g} \mathrm{~mol}^{-1}}$
atm
20) In the following reaction, $8.39 \succeq$ of H_{2} is reacted with an excess of N_{2} in a rigid container. The initial temperature is $25.6^{\circ} \mathrm{C}$. The final temperature is $284.1^{\circ} \mathrm{C}$. What is the final pressure of NH_{3} ?

$$
3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}
$$

ANS: 10.4 atm

temperature$/{ }^{\circ} \mathrm{C}$	Vapor pressure of water as a function of temperature				
	Pressure	temperature	Pressure	temperature	Pressure
	/torr	$1{ }^{\circ} \mathrm{C}$	/torr	$1{ }^{\circ} \mathrm{C}$	/torr
0.0	4.6				
1.0	4.9	21.0	18.7	41.0	58.3
2.0	5.3	22.0	19.8	42.0	61.5
3.0	5.7	23.0	21.1	43.0	64.8
4.0	6.1	24.0	22.4	44.0	68.3
5.0	6.5	25.0	23.8	45.0	71.9
6.0	7.0	26.0	26.2	46.0	75.7
7.0	7.5	27.0	26.7	47.0	79.6
8.0	8.0	28.0	28.3	48.0	83.7
9.0	8.6	29.0	30.0	49.0	88.0
10.0	9.2	30.0	31.8	50.0	92.5
11.0	9.8	31.0	33.7	51.0	97.2
12.0	10.5	32.0	35.7	52.0	102.1
13.0	11.2	33.0	37.7	53.0	107.2
14.0	12.0	34.0	39.9	54.0	112.5
15.0	12.8	35.0	42.2	55.0	118.0
16.0	13.6	36.0	44.6	56.0	123.8
17.0	14.5	37.0	47.1	57.0	129.8
18.0	15.5	38.0	49.7	58.0	136.0
19.0	16.5	39.0	52.4	59.0	142.6
20.0	17.6	40.0	55.3	60.0	149.4

Chart of the common polyions

ClO^{-}	ClO_{2}^{-}	ClO_{3}^{-}	ClO_{4}^{-}
BrO^{-}	BrO_{2}^{-}	BrO_{3}^{-}	BrO_{4}^{-}
IO^{-}	IO_{2}^{-}	IO_{3}^{-}	IO_{4}^{-}
$\mathrm{SO}_{2}{ }^{2-}$	$\mathrm{SO}_{3}{ }^{2-}$	SO_{4}^{2-}	
	NO_{2}^{-}	NO_{3}^{-}	
$\mathrm{PO}_{2}{ }^{3-}$	$\mathrm{PO}_{3}{ }^{3-}$	PO_{4}^{3-}	
		$\mathrm{CO}_{3}{ }^{2-}$	

$$
\begin{array}{rl}
N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & T_{K}=t_{{ }^{\circ} \mathrm{C}}+273.15 \\
V_{\mathrm{STP}}=22.4 \mathrm{~L} \mathrm{~mol}^{-1} & R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1}
\end{array}
$$

$$
v_{1} / v_{2}=\sqrt{m_{2} / m_{1}} \quad\left(P+\left[a n^{2} / V^{2}\right]\right)(V-b n)=n R T
$$

KEY

(Note: the number of sig. figs. may not be correct. The program does not provide capability.)

1) $\quad 0.257 \mathrm{M}$
2) $\quad 1.47 \mathrm{M}$
3) 0.1455 M
4) $\quad 56.1 \mathrm{~L}$
5) $\quad 60.6 \mathrm{~mL}$
6) $\quad 2.857 \mathrm{~g}$
7) $\quad 1.63 \mathrm{~L}$
8) $\quad 57.3 \mathrm{~L}$
9) $\quad 12.92 \mathrm{~atm}$
10) \qquad
11) 0.237 mol
12) 38.4 atm
13) $\quad 7.751 \mathrm{~g}$
14) $51 \mathrm{~g} \mathrm{~mol}^{-1}$
15) $\quad 7.13 \mathrm{~L}$
16) 103 L
17) $\quad 726.9$ torr $(0.956 \mathrm{~atm})$
18) $23.8 \mathrm{~atm} \quad$ (26.4 atm ideal. dfference $=2.5 \mathrm{~atm})$
19) $\underset{196.4 \mathrm{~g} \mathrm{~mol}^{-1}}{ }$
20) 10.4 atm
