Name:_____

- 1) What is the concentration (molarity) of a solution that has 1.23 g of dissolved Na₂HPO₄ in 883.6 mL of solution.
 - $c(Na_2HPO_4) =$
- 2) What is the concentration (molarity) of a solution that has 5.41 g of dissolved $Fe(NO_3)_3$ in 398.9 mL of solution.
 - $c(Fe(NO_3)_3) = \underline{\qquad}$
- 3) 752.1 mL of a 2.83 M solution of NaCl is diluted to 21.011 L. What is the concentration of the resultant solution?

c(NaCl) = _____

4) 62.36 mL of a 1.07 M solution of $Zn(NO_3)_2$ is diluted to 1036.0 mL. What is the concentration of the resultant solution?

 $c(Zn(NO_3)_2) = \underline{\qquad}$

5) For the following reaction: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$, 17.9940 g of O_2 is reacted with an excess of C_3H_8 . How many grams of CO_2 should be produced?

 $m(\mathrm{CO}_2) =$

- 6) For the following reaction: $3H_2 + N_2 \rightarrow 2NH_3$, 9.4678 g of N₂ is reacted with an excess of H₂. How many grams of NH₃ should be produced? $m(NH_3) =$ _____
- 7) For the following reaction: $C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$, if 12.6003 g of O_2 reacts with 80.1480 g of C_3H_8 , how many grams of H_2O should be produced? $m(H_2O) =$ _____
- 8) For the following reaction: $2CH_3OH + 3O_2 \rightarrow 2CO_2 + 4H_2O$, if 4.7710 g of O_2 reacts with 67.2581 g of CH_3OH , how many grams of CO_2 should be produced? $m(CO_2) = _$

Name:_____

- 9) For the following reaction: $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$, 30.0700 g of C_2H_6 is reacted with an excess of O_2 . 11.6890 grams of H_2O is recovered. What is the percent yield?
 - $%_{\text{yield}}(\text{H}_2\text{O}) =$
- 10) For the following reaction: $2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$, 30.0700 g of C_2H_6 is reacted with an excess of O_2 . The percent yield is 85.5% What mass of H_2O is recovered?
 - $m(H_2O) =$ _____
- 12) 21.96 mL of Ca(OH)₂ is titrated with 0.7695 M HCl. 44.85 mL of HCl was required to reach an endpoint. What is the concentration of the Ca(OH)₂? The reaction is: 2HCl + Ca(OH)₂ → CaCl₂ + 2H₂O.

 $c(Ca(OH)_2) =$

13) How much 1.4181 M HNO₃ is needed to neutralize 9.63 mL of 0.5353 M Ca(OH)₂ ? The reaction is: Ca(OH)₂ + 2HNO₃ \rightarrow 2H₂O + Ca(NO₃)₂.

V =

- 14) The pressure of He in a container at 23.61°C is 1.62 atm. The volume of the container is 6.85 L. What mass of He is contained?
 - *m* = _____
- 15) At what temperature is 475.15 g of Kr gas with a pressure of 4.69 atm contained in a 44.37 L volume.
 - *T* = _____
- 16) Kr is contained in a rigid, leak−tight stainless steel cylinder at −11°C and a pressure of 5.52 atm. If the temperature were to change to 398°C, what would the pressure be?

T = _____

Name:_____

17) Ar is contained in a flexible container and held at a constant temperature. Initially, the volume of the container was 9.13 L and the pressure was 1.21 torr. The pressure was changed to 2.18 torr without any lose or gain of material or temperature change. What was the final volume?

V =_____

18) One mole of an ideal gas is contained in a volume at 183.3 °C and 3.89 atm. If the pressure is lowered to 1.00 atm and the temperature to 0.00 °C, what volume would this gas occupy?

V =_____

- 19) A container holds 544.5 torr of Ne and water liquid and vapor at 29.0°C. What is the total pressure? Give the answer to the nearedst 0.01 torr.
 - *P* = _____
- 20) How much faster would one expect CH_4 to diffuse versus C_2H_6 ? (Give a number.)

Ratio = _____

copy 1

KEY

1)	$c(Na_2HPO_4) = 9.81 \times 10^{-3} \text{ M}$
2)	$c(\text{Fe}(\text{NO}_3)_3) = 5.61 \times 10^{-2} \text{ M}$
3)	$c(\text{NaCl}) = 1.01 \times 10^{-1} \text{ M}$
4)	$c(\text{Zn}(\text{NO}_3)_2) = 6.44 \times 10^{-2} \text{ M}$
5)	$m(CO_2) = 15.5 g$
6)	$m(NH_3) = 11.50 g$

- 7) $m(H_2O) = 5.67 \text{ g}$ (wrong answer = 27.67 g)
- 8) $m(CO_2) = 4.37 \text{ g}$ (wrong answer = 9.25 g)
- 9) $[\%_{\text{yield}}] = 21.4\%$
- 10) 80.5% $m(H_2O) = 43.57 \text{ g}$
- 12) 0.7859 м Ca(OH)₂
- 13) 7.27 mL HNO₃
- 14) 1.824 g
- 15) 447.24 K 174.09°C
- 16) 14.13 atm
- 17) 5.07 L
- 18) 22.4 L
- 19) 544.7 torr
- 20) 1.37