Name: \qquad

1) What is the concentration (molarity) of a solution that has 1.23 g of dissolved $\mathrm{Na}_{2} \mathrm{HPO}_{4}$ in 883.6 mL of solution.
$\mathrm{c}\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=$ \qquad
2) What is the concentration (molarity) of a solution that has 5.41 g of dissolved $\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}$ in 398.9 mL of solution.
$\mathrm{c}\left(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right)=$ \qquad
3) 752.1 mL of a 2.83 m solution of NaCl is diluted to 21.011 L . What is the concentration of the resultant solution?
$\mathrm{c}(\mathrm{NaCl})=$ \qquad
4) 62.36 mL of a 1.07 m solution of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$ is diluted to 1036.0 mL . What is the concentration of the resultant solution?
$\mathrm{c}\left(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right)=$ \qquad
5) For the following reaction: $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}, 17.9940 \mathrm{~g}$ of O_{2} is reacted with an excess of $\mathrm{C}_{3} \mathrm{H}_{8}$. How many grams of CO_{2} should be produced?
$m\left(\mathrm{CO}_{2}\right)=$ \qquad
6) For the following reaction: $3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}, 9.4678 \mathrm{~g}$ of N_{2} is reacted with an excess of H_{2}. How many grams of NH_{3} should be produced? $m\left(\mathrm{NH}_{3}\right)=$ \qquad
7) For the following reaction: $\mathrm{C}_{3} \mathrm{H}_{8}+5 \mathrm{O}_{2} \rightarrow 3 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$, if 12.6003 g of O_{2} reacts with 80.1480 g of $\mathrm{C}_{3} \mathrm{H}_{8}$, how many grams of $\mathrm{H}_{2} \mathrm{O}$ should be produced?
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=$ \qquad
8) For the following reaction: $2 \mathrm{CH}_{3} \mathrm{OH}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+4 \mathrm{H}_{2} \mathrm{O}$, if 4.7710 g of O_{2} reacts with 67.2581 g of $\mathrm{CH}_{3} \mathrm{OH}$, how many grams of CO_{2} should be produced?
$m\left(\mathrm{CO}_{2}\right)=$ \qquad

Name: \qquad
9) For the following reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}, 30.0700 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$ is reacted with an excess of O_{2}. 11.6890 grams of $\mathrm{H}_{2} \mathrm{O}$ is recovered. What is the percent yield?
$\%_{\text {yield }}\left(\mathrm{H}_{2} \mathrm{O}\right)=$ \qquad
10) For the following reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}, 30.0700 \mathrm{~g}$ of $\mathrm{C}_{2} \mathrm{H}_{6}$ is reacted with an excess of O_{2}. The percent yield is 85.5% What mass of $\mathrm{H}_{2} \mathrm{O}$ is recovered?
$m\left(\mathrm{H}_{2} \mathrm{O}\right)=$ \qquad
12) 21.96 mL of $\mathrm{Ca}(\mathrm{OH})_{2}$ is titrated with 0.7695 m HCl .44 .85 mL of HCl was required to reach an endpoint. What is the concentration of the $\mathrm{Ca}(\mathrm{OH})_{2}$?
The reaction is: $2 \mathrm{HCl}+\mathrm{Ca}(\mathrm{OH})_{2} \rightarrow \mathrm{CaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}$.
$\mathrm{c}\left(\mathrm{Ca}(\mathrm{OH})_{2}\right)=$ \qquad
13) How much $1.4181 \mathrm{~m} \mathrm{HNO}_{3}$ is needed to neutralize 9.63 mL of $0.5353 \mathrm{~m} \mathrm{Ca}(\mathrm{OH})_{2}$?

The reaction is: $\mathrm{Ca}(\mathrm{OH})_{2}+2 \mathrm{HNO}_{3} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}+\mathrm{Ca}\left(\mathrm{NO}_{3}\right)_{2}$.
$V=$ \qquad
14) The pressure of He in a container at $23.61^{\circ} \mathrm{C}$ is 1.62 atm . The volume of the container is 6.85 L . What mass of He is contained?
$m=$ \qquad
15) At what temperature is 475.15 g of Kr gas with a pressure of 4.69 atm contained in a 44.37 L volume.
$T=$ \qquad
16) Kr is contained in a rigid, leak-tight stainless steel cylinder at $-11^{\circ} \mathrm{C}$ and a pressure of 5.52 atm . If the temperature were to change to $398^{\circ} \mathrm{C}$, what would the pressure be?
$T=$ \qquad

Name: \qquad
17) Ar is contained in a flexible container and held at a constant temperature. Initially, the volume of the container was 9.13 L and the pressure was 1.21 torr. The pressure was changed to 2.18 torr without any lose or gain of material or temperature change. What was the final volume?
$V=$ \qquad
18) One mole of an ideal gas is contained in a volume at $183.3^{\circ} \mathrm{C}$ and 3.89 atm . If the pressure is lowered to 1.00 atm and the temperature to $0.00^{\circ} \mathrm{C}$, what volume would this gas occupy?

$$
V=
$$

\qquad
19) A container holds 544.5 torr of Ne and water liquid and vapor at $29.0^{\circ} \mathrm{C}$. What is the total pressure? Give the answer to the nearedst 0.01 torr.
$P=$ \qquad
20) How much faster would one expect CH_{4} to diffuse versus $\mathrm{C}_{2} \mathrm{H}_{6}$? (Give a number.)

Ratio $=$ \qquad

KEY

1) $c\left(\mathrm{Na}_{2} \mathrm{HPO}_{4}\right)=9.81 \times 10^{-3} \mathrm{M}$
2) $c\left(\mathrm{Fe}\left(\mathrm{NO}_{3}\right)_{3}\right)=5.61 \times 10^{-2} \mathrm{M}$
3) $c(\mathrm{NaCl})=1.01 \times 10^{-1} \mathrm{M}$
4) $c\left(\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right)=6.44 \times 10^{-2} \mathrm{M}$
5) $m\left(\mathrm{CO}_{2}\right)=15.5 \mathrm{~g}$
6) $m\left(\mathrm{NH}_{3}\right)=11.50 \mathrm{~g}$
7) $m\left(\mathrm{H}_{2} \mathrm{O}\right)=5.67 \mathrm{~g} \quad$ (wrong answer $\left.=27.67 \mathrm{~g}\right)$
8) $m\left(\mathrm{CO}_{2}\right)=4.37 \mathrm{~g} \quad$ (wrong answer $=9.25 \mathrm{~g}$)
9) $\left[\%_{\text {yield }}\right]=21.4 \%$
10) $80.5 \% \quad m\left(\mathrm{H}_{2} \mathrm{O}\right)=43.57 \mathrm{~g}$
11) $0.7859 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
12) $7.27 \mathrm{~mL} \mathrm{HNO}_{3}$
13) 1.824 g
14) $447.24 \mathrm{~K} \quad 174.09^{\circ} \mathrm{C}$
15) 14.13 atm
16) 5.07 L
17) 22.4 L
18) 544.7 torr
19) 1.37
