Answer the following questions on the answer sheet.

$$
\begin{array}{ll}
N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} & T_{K}=t_{{ }^{\circ} \mathrm{C}}+273.15 \\
\boldsymbol{V}_{\mathrm{STP}}=22.4 \mathrm{~L} \mathrm{~mol}^{-1} & R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K} \\
v_{1} / \mathrm{mol}^{-1} \\
v_{2}=\sqrt{m_{2} / m_{l}} & \left(P+\left[a n^{2} / V^{2}\right]\right)(V-b n)=n R T
\end{array}
$$

1) Calculate the molarity of a solution made with 45.9 g of $\mathrm{Co}\left(\mathrm{ClO}_{4}\right)_{3}$ in 420.9 mL of water solution.
2) What is the molarity of a solution would one get if 378 mL of $7.23 \mathrm{~m} \mathrm{CaCl}{ }_{2}$ solution is diluted to 3.389 L .
3) In the following titration reaction 27.26 mL of 0.5051 m KOH is reacted with 32.14 mL of $\mathrm{H}_{2} \mathrm{SO}_{4}$. What is the concentration of the $\mathrm{H}_{2} \mathrm{SO}_{4}$?

$$
\mathrm{H}_{2} \mathrm{SO}_{4}+2 \mathrm{NaOH} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O} .
$$

4) 31.73 kg of NaOH is neutralized with $7.1 \mathrm{~m}_{2} \mathrm{SO}_{4}$. How many liters of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is required? (Be careful with the units.)
The reaction is: $2 \mathrm{NaOH}+\mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Na}_{2} \mathrm{SO}_{4}+2 \mathrm{H}_{2} \mathrm{O}$
5) Write the Brønsted-Lowry reaction for each of the following Arrhenius reactions. (" $\mathrm{H}^{+} \mathrm{t}$ is an acceptable substitute for ${ } \mathrm{H}_{3} \mathrm{O}^{+}$". In either case, balance the reaction.)

Reaction 1: $\mathrm{HIO}_{2}+\mathrm{OH}^{-} \rightarrow$
Reaction 2: $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow$
6) What volume of $5.64 \mathrm{M} \mathrm{BaCl}_{2}$ solution is needed to make 231.0 mL of a 0.481 m solution?
7) How many grams of BaCl_{2} are needed to create 72.0 mL of a 0.417 m solution?
milliliters of 11.0 m HCl
8) How many liters of HCl at STP are required to create 832 mL of a 0.372 m solution?
9) What volume does 8.85 mol of CH_{4} gas occupy at STP?
10) What volume does 4.37 g of HCl gas occupy at $0^{\circ} \mathrm{C}$ and 1.00 atm pressure?
11) N_{2} is contained in 1.61 L at a pressure of 7.20 atm and a temperature of $55.7^{\circ} \mathrm{C}$. How many moles of N_{2} are there?
12) 44.4 g of $\mathrm{CH}_{3} \mathrm{NH}_{2}$ are contained in 356 mL at $174^{\circ} \mathrm{C}$. What is the pressure of this ideal gas?
13) What mass of HF is required to fill a volume of 8.16 L at a pressure of 543 torr and a temperature of $197.9^{\circ} \mathrm{C}$?
14) The molar mass of a liquid is determined by the Dumas method. The volume of the flask used was 696 mL . The mass of the flask before the experiment was 42.5911 g . After the experiment, the mass was found to be 43.6186 g . The atmospheric pressure at the time was 763.5 torr. What is the molar mass of the liquid? (A boiling water bath was used to vaporize the liquid at $100.0^{\circ} \mathrm{C}$.)
15) What volume does 12.2 g of hydrogen gas occupy at STP?
16) What volume does 836 g of xenon gas occupy at STP?
17) Hydrogen is collected over water at $3^{\circ} \mathrm{C}$. The atmospheric pressure is 762.2 torr. What is the pressure of the dry hydrogen? (Vapor pressures are given in the attached table.)
18) Using the Van der Waal equation, calculate the pressure of 3.17 mole of ethanol contained in a volume of 3.51 L at a temperature of $255^{\circ} \mathrm{C}$.
$a=12.02 \mathrm{~atm} \mathrm{~L}^{-2} \mathrm{~mol}^{-2}$ and $b=0.0841 \mathrm{~L} \mathrm{~mol}^{-1}$
19) Helium diffuses 3.85 times faster than an unknown gas. What is the molar mass of the unknown gas?
20) Circle the correct answer on the answer sheet. Pressure is defined as:
A) the energy expended in increasing a volume
B) the number of molecules per unit area
C) the number of moles of gas per unit area
D) the energy required to remove molecules from a surface
E) the force applied per unit area
F) the number of moles in a volume

temperature$/{ }^{\circ} \mathrm{C}$	Vapor pressure of water as a function of temperature				
	Pressure	temperature	Pressure	temperature	Pressure
	/torr	$1{ }^{\circ} \mathrm{C}$	/torr	$1{ }^{\circ} \mathrm{C}$	/torr
0.0	4.6				
1.0	4.9	21.0	18.7	41.0	58.3
2.0	5.3	22.0	19.8	42.0	61.5
3.0	5.7	23.0	21.1	43.0	64.8
4.0	6.1	24.0	22.4	44.0	68.3
5.0	6.5	25.0	23.8	45.0	71.9
6.0	7.0	26.0	26.2	46.0	75.7
7.0	7.5	27.0	26.7	47.0	79.6
8.0	8.0	28.0	28.3	48.0	83.7
9.0	8.6	29.0	30.0	49.0	88.0
10.0	9.2	30.0	31.8	50.0	92.5
11.0	9.8	31.0	33.7	51.0	97.2
12.0	10.5	32.0	35.7	52.0	102.1
13.0	11.2	33.0	37.7	53.0	107.2
14.0	12.0	34.0	39.9	54.0	112.5
15.0	12.8	35.0	42.2	55.0	118.0
16.0	13.6	36.0	44.6	56.0	123.8
17.0	14.5	37.0	47.1	57.0	129.8
18.0	15.5	38.0	49.7	58.0	136.0
19.0	16.5	39.0	52.4	59.0	142.6
20.0	17.6	40.0	55.3	60.0	149.4

Chart of the common polyions

ClO^{-}	ClO_{2}^{-}	ClO_{3}^{-}	ClO_{4}^{-}
BrO^{-}	BrO_{2}^{-}	BrO^{-}	BrO_{4}^{-}
IO^{-}	IO_{2}^{-}	IO_{3}^{-}	IO_{4}^{-}
$\mathrm{SO}_{2}{ }^{2-}$	$\mathrm{SO}_{3}{ }^{2-}$	SO_{4}^{2-}	
	NO_{2}^{-}	NO_{3}^{-}	
$\mathrm{PO}_{2}{ }^{3-}$	$\mathrm{PO}_{3}{ }^{3-}$	PO_{4}^{3-}	
		$\mathrm{CO}_{3}{ }^{2-}$	

$$
N_{\mathrm{A}}=6.022 \times 10^{23} \mathrm{~mol}^{-1} \quad T_{K}=t_{{ }^{\circ} \mathrm{C}}+273.15
$$

$$
\begin{array}{ll}
\boldsymbol{V}_{\mathrm{STP}}=22.4 \mathrm{~L} \mathrm{~mol}^{-1} & R=0.08206 \mathrm{~L} \text { atm K} \\
v_{1} / v_{2}=\sqrt{m_{2} / m_{l}}{ }^{-1} \\
& \left(P+\left[a n^{2} / V^{2}\right]\right)(V-b n)=n R T
\end{array}
$$

WARNING: Points will be taken off for wrong or missing units!

1) $\quad 0.305 \mathrm{M}$
2) 0.806 M
3) $0.2142 \longrightarrow \mathrm{M}$ (units)
4) 55.9 L (units)
5) Reaction 1: $\mathrm{HIO}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{IO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$

Reaction 2: $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow \mathrm{CH}_{3} \mathrm{NH}_{3}^{+}+\mathrm{H}_{2} \mathrm{O}$
6) 19.7 mL (units)
7) $\quad 6.25 \quad \mathrm{~g} \quad$ (units)
8) 28.1 mL (units) (original 6.93 L)
9) $198 \xrightarrow{L}$ (units)
10) \qquad
\qquad (units)
11) $\xlongequal{0.430}$ $\xrightarrow{\mathrm{mol}}$ (units)
12) \qquad
\qquad
13) \qquad
\qquad (units)
14) \qquad $\underline{\mathrm{g} \mathrm{mol}^{-1}}$ (units)
15) \qquad L \qquad (units)
16) \qquad
\qquad (units)
17) \qquad
 \qquad (units)
18) \qquad
\qquad (units)
19) \qquad $\mathrm{g} \mathrm{mol}^{-1}$ (units)
A B C
$D \sim E$

KEY
(Note: the number of sig. figs. may not be correct. The program does not provide the capability.)

1) $\quad 0.305$
2) $\quad 0.806$
3) $\quad 0.2142 \mathrm{M}$
4) $\quad 55.9 \mathrm{~L}$
5) Reaction 1: $\mathrm{HIO}_{2}+\mathrm{OH}^{-} \rightarrow \mathrm{IO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O}$

Reaction 2: $\mathrm{CH}_{3} \mathrm{NH}_{2}+\mathrm{H}_{3} \mathrm{O}^{+} \rightarrow$
6) $\quad 19.7 \mathrm{~mL}$
7) $\quad 6.251 \mathrm{~g}$
8) $\quad 6.93 \mathrm{~L}$
9) \quad 198.2 L
10) $\quad 2.685 \mathrm{~L}$
11) $\quad 0.430 \mathrm{~mol}$
12) 147.3 atm
13) $\quad 3.018 \mathrm{~g}$
14) $\quad 45 \mathrm{~g} \mathrm{~mol}^{-1}$
15) 136 L
16) 143 L
17) 756.5 torr
18) 32.6 atm (39.1 atm ideal. dfference $=6.6 \mathrm{~atm})$
19) $\quad 59.2 \mathrm{~g} \mathrm{~mol}^{-1}$
20) \mathbf{E}

