Name \qquad
Enter you answers on the answer sheet.

$$
\begin{array}{rl}
R=0.08206 \mathrm{~L} \mathrm{~atm} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} & 760 \text { torr } \equiv 1 \mathrm{~atm} \\
V_{\text {STP }}=22.4 \mathrm{~L} \mathrm{~mol}^{-1} & T / \mathrm{K}=t /{ }^{\circ} \mathrm{C}+273.15
\end{array}
$$

$$
\text { STP: } P \equiv 1 \mathrm{~atm}, T=273.15 \mathrm{~K}
$$

$$
\left(P+\frac{a n^{2}}{V^{2}}\right)(V-b n)=n R T
$$

$$
\left(\frac{v_{1}}{v_{2}}\right)=\sqrt{\frac{m_{2}}{m_{1}}}
$$

temperature	pressure	temperature	pressure	temperature	pressure	temperature	pressure
$0{ }^{\circ} \mathrm{C}$	4.6 torr	$16^{\circ} \mathrm{C}$	13.6 torr	$31{ }^{\circ} \mathrm{C}$	33.7 torr	$46{ }^{\circ} \mathrm{C}$	75.7 torr
$1{ }^{\circ} \mathrm{C}$	4.9 torr	$17{ }^{\circ} \mathrm{C}$	14.5 torr	$32{ }^{\circ} \mathrm{C}$	35.7 torr	$47^{\circ} \mathrm{C}$	79.6 torr
$2{ }^{\circ} \mathrm{C}$	5.3 torr	$18{ }^{\circ} \mathrm{C}$	15.5 torr	$33{ }^{\circ} \mathrm{C}$	37.7 torr	$48{ }^{\circ} \mathrm{C}$	83.7 torr
$3{ }^{\circ} \mathrm{C}$	5.7 torr	$19{ }^{\circ} \mathrm{C}$	16.5 torr	$34{ }^{\circ} \mathrm{C}$	39.9 torr	$49{ }^{\circ} \mathrm{C}$	88.0 torr
$4{ }^{\circ} \mathrm{C}$	6.1 torr	$20^{\circ} \mathrm{C}$	17.6 torr	$35{ }^{\circ} \mathrm{C}$	42.2 torr	$50^{\circ} \mathrm{C}$	92.5 torr
$5^{\circ} \mathrm{C}$	6.5 torr	$21{ }^{\circ} \mathrm{C}$	18.7 torr	$36{ }^{\circ} \mathrm{C}$	44.6 torr	$51{ }^{\circ} \mathrm{C}$	97.2 torr
$6^{\circ} \mathrm{C}$	7.0 torr	$22^{\circ} \mathrm{C}$	19.8 torr	$37{ }^{\circ} \mathrm{C}$	47.1 torr	$52{ }^{\circ} \mathrm{C}$	102.1 torr
$7{ }^{\circ} \mathrm{C}$	7.5 torr	$23{ }^{\circ} \mathrm{C}$	21.1 torr	$38{ }^{\circ} \mathrm{C}$	49.7 torr	$53{ }^{\circ} \mathrm{C}$	107.2 torr
$8^{\circ} \mathrm{C}$	8.0 torr	$24{ }^{\circ} \mathrm{C}$	22.4 torr	$39^{\circ} \mathrm{C}$	52.4 torr	$54{ }^{\circ} \mathrm{C}$	112.5 torr
$9{ }^{\circ} \mathrm{C}$	8.6 torr	$25^{\circ} \mathrm{C}$	23.8 torr	$40{ }^{\circ} \mathrm{C}$	55.3 torr	$55{ }^{\circ} \mathrm{C}$	118.0 torr
$10^{\circ} \mathrm{C}$	9.2 torr	$26^{\circ} \mathrm{C}$	26.2 torr	$41^{\circ} \mathrm{C}$	58.3 torr	$56^{\circ} \mathrm{C}$	123.8 torr
$11{ }^{\circ} \mathrm{C}$	9.8 torr	$27^{\circ} \mathrm{C}$	26.7 torr	$42{ }^{\circ} \mathrm{C}$	61.5 torr	$57^{\circ} \mathrm{C}$	129.8 torr
$12{ }^{\circ} \mathrm{C}$	10.5 torr	$28{ }^{\circ} \mathrm{C}$	28.3 torr	$43{ }^{\circ} \mathrm{C}$	64.8 torr	$58{ }^{\circ} \mathrm{C}$	136.0 torr
$13{ }^{\circ} \mathrm{C}$	11.2 torr	$29^{\circ} \mathrm{C}$	30.0 torr	$44^{\circ} \mathrm{C}$	68.3 torr	$59^{\circ} \mathrm{C}$	142.6 torr
$14{ }^{\circ} \mathrm{C}$	12.0 torr	$30^{\circ} \mathrm{C}$	31.8 torr	$45{ }^{\circ} \mathrm{C}$	71.9 torr	$60^{\circ} \mathrm{C}$	149.4 torr

1) What is the solute concentration of a solution created by mixing 33.3 mL of a 3.09 m solution of HCl with enough water to make 219 mL total. Give your answer to 3 significant figures.
2) In the following reaction: $2 \mathrm{HCl}+\mathrm{Ba}(\mathrm{OH})_{2} \rightarrow \mathrm{BaCl}_{2}+2 \mathrm{H}_{2} \mathrm{O}, \mathrm{Ba}(\mathrm{OH})_{2}$ is used to neutralize 16.27 mL of HCl . The concentration of the HCl is $\quad 1.167 \mathrm{~m}$ and $\quad 92.17 \mathrm{~mL}$ of $\mathrm{Ba}(\mathrm{OH})_{2}$ is required. What is the concentration of the $\mathrm{Ba}(\mathrm{OH})_{2}$ solution? Give your answer to 3 significant figures.
3) What is the pressure of $\quad 3.00$ mole of an ideal gas at $782.0^{\circ} \mathrm{C}$ confined to a volume of 82.9 L ? Give your answer to 3 significant figures.
4) How much volume does
58.3 g of N_{2} require at STP? Give your answer to 3 significant figures.
5) Hydrogen is contained in a flexible container. The volume and pressure were initially 55.1 L and 7.85 atm . The volume is changed to 25.9 L with the temperature held constant. What is the final pressure? Give your answer to 3 significant figures.
6) Helium is initially at 66.7 K and 210 torr in a rigid leak-tight container. The temperature is increased to 139.8 K . What is the resultant pressure?
7) Oxygen at $\quad 6.26 \mathrm{~atm}$ and $\quad 305.1 \mathrm{~K}$ has an initial volume of 80.0 L is allowed to expand into a volume of
109.6 L at a temperature of $\quad 554.3 \mathrm{~K}$. What is the final pressure?
8) What is the ratio of the velocities of SCl_{6} to SBr_{6} ?

The sulfur isotope is 32.0 The bromine isotope is 79.0 The chlorine isotope is 35.0

Name \qquad
9) In the following reaction, performed in a flexible container, enough N_{2} is supplied as the reaction proceeds.
$3 \mathrm{H}_{2}+\mathrm{N}_{2} \rightarrow 2 \mathrm{NH}_{3}$
62.2 L of H_{2} is reacted with an excess of N_{2}. The pressure of H_{2} was 6.81 atm. Before the reaction, the temperature was 286.9 K . After the reaction, the temperature was 720.2 K and the pressure of the NH_{3} was 10.35 atm. What is the final volume of the NH_{3} ? Give your answer to 3 significant figures.
10) The following are the pressures for some gasses contained in the same chamber:
$\mathrm{N}_{2}: 4.8 \mathrm{~atm} . \quad \mathrm{Ar}: 5.7 \mathrm{~atm} . \quad \mathrm{H}: 4.1 \mathrm{~atm} . \quad \mathrm{He}: 4.5 \mathrm{~atm}$.

What is the total pressure? Give your answer to the nearest 0.1 atm .
11) Hydrogen is collected over water at $21.0^{\circ} \mathrm{C}$. The atmospheric pressure is 769.3 torr. What is the pressure of the dry hydrogen? Give your answer to the nearest 0.1 torr.
12) The mass of liquid left after a Dumas method was 1.591 g . The following is the relevant information: Water bath temperature $=100.0^{\circ} \mathrm{C} . \quad$ Atmospheric pressure $=778.3$ torr \quad volume of the flask $=564.2 \mathrm{~mL}$ What is the molar mass of the liquid?
13) Using the Van der Waal equation, calculate the pressure of 3.41 mole of ethanol contained in a volume of 1.52 L at $512 \mathrm{~K} . \quad a=12.02 \mathrm{~atm} \mathrm{~L}^{-2} \mathrm{~mol}^{2} \quad \mathrm{~b}=0.0841 \mathrm{~L} \mathrm{~mol}^{-1} \quad$ Give your answer to 3 significant figures.
14) How many liters does 33.5 mole of O_{2} occupy at STP?
15) In the following reaction starting and ending at STP, how many liters of SO_{2} are produced 87.40 L of SO and 43.70 L of O_{2} are reacted? $\quad 2 \mathrm{SO}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{2}$
16) Which of the following phases retains its volume but conforms to the shape of the container
A A solution
B A mixture
C A solid
D A liquid
E A gas
17) 3.40 mole of nitrogen gas is contained in a metal cylinder a 10.7 atm pressure. An additional 3.48 mole of nitrogen is pumped into this cylinder at the same temperature.

What is the resultant pressure inside the cylinder? Give your answer to the nearest 0.1 atm.
18) A gas takes up 125 L at STP. The mass of this gas is 396 g . What is its molar mass?
19) A mole of an ideal gas is contained in a volume a $842.7^{\circ} \mathrm{C}$ and 30.1 atm of pressure. If the pressure is lowered to 1.00 atm and the temperature to $0.0^{\circ} \mathrm{C}$, what volume would this gas occupy?
20) 3.36 mole of nitrogen gas is contained in a metal cylinder at STP. What is the cylinder's temperature in kelvins?

CHEM 1110 test 2 for fall 2007

Name \qquad
number:

1) \qquad
2) \qquad
3) \qquad
2) \qquad
5) \qquad
3) \qquad $\underline{ }$

7) \qquad
8) \qquad $\underline{\square}$

9) \qquad
\qquad
10) \qquad
\qquad
11) \qquad
\qquad
12) \qquad
\qquad
13) \qquad
\qquad
14) \qquad
\qquad
15) \qquad
$16)$
A
B
C

D E

17) \qquad $\underline{ }$

18) \qquad
\qquad

19) \qquad
\qquad
20) \qquad

CHEM 1110 test 2 for fall 2007

```
KEY
    1 0.4698 M (but only 3 sig figs.) or mol L-1
    2) 0.103 m or mol L-1
    3) 3.133 atm (but only 3 sig figs.)
    4 46.64 L (but only 3 sig figs.)
    5 ) 16.70 atm (but only 3 sig figs.)
    6 ) 440 torr
    7) 8.30 atm
    8) 1.45 unitless since its a ratio
    9 68.5 L (but only 3 sig figs.)
    10 ) 19.1 atm
    11 ( 750.6 torr ( or 0.9876 atm)
    12 ) }84.3\mp@subsup{\mathbf{g mol}}{}{-1
    13 ) 55.7 atm
    14 ) 750 L
    15 ) 87.40 atm
    16 D D
    17 ) 21.7 atm
    18 ) }71\mp@subsup{\textrm{g mol}}{}{-1
    19 22.4 L
    20 ) 273.15 K
```

