C	0	n	V	1

Critical	Question	#8
Cilicui	Question	11 0

Note that 0 $^{\circ}C$ = +273 K and R = 0.08206 L atm mol $^{-1}$ K^{-1}

Name

Calculate the pressure of 4.50 mol of an ideal gas which is contained in a 7.0 L volume at 200°C.

ANS: _____ atm

C	0	g	v	2

α · · · 1	<u> </u>	110
('ritical	()IIIAction	1 # X
Cilicai	Question	1π 0

Name

Calculate the container volume if 3.00 mol of an ideal gas which is constrained with 6.0 atm pressure at 300° C.

ANS: _____ L

Critical Q	uestion	#8
------------	---------	----

Name

Calculate the temperature of 3.00 mol of an ideal gas which is contained in a 5.0 L volume at a pressure of 15.0 atm. Show the temperature unit of your answer

ANS: _____ unit !

copy	4
------	---

Critical	Question	#8
Citteai	Question	11 C

Name

How many moles of an ideal gas which is contained in a $5.0\,\mathrm{L}$ volume at $270\,^{\circ}\mathrm{C}$ would generate $2.0\,\mathrm{atm}$ of pressure?

ANS: _____ mol

С	0	р	У	-

~ · · · 1	\sim	, •	110
Critical	()11	Action.	## X
Cilicai	Ou	CSHOIL	πo

Name

Calculate the pressure of 2.50 mol of an ideal gas which is contained in a 17.0 L volume at $200\,^{\circ}\text{C}$.

ANS: _____ atm

сору (ó
--------	---

Critical	Ones	tion	#8
Cilicai	Oucs	ион	πo

Name

Calculate the container volume if 5.00 mol of an ideal gas which is constrained with 60.0 atm pressure at 300° C.

ANS: _____ L

Critical Q	uestion	#8
------------	---------	----

Name

Calculate the temperature of 4.00 mol of an ideal gas which is contained in a 5.0 L volume at a pressure of 25.0 atm. Show the temperature unit of your answer

ANS: _____ unit !

C	0	n	v	۶
$\overline{}$	\circ	\sim	v	u

Critical	Question	1 #8
Cilicai	Question.	1110

Note that 0 $^{\circ}C$ = +273 K and R = 0.08206 L atm mol $^{-1}$ K $^{-1}$

Name

How many moles of an ideal gas which is contained in a $5.0\,\mathrm{L}$ volume at $250\,^{\circ}\mathrm{C}$ would generate $2.0\,\mathrm{atm}$ of pressure?

ANS: _____ mol